Finite cyclic semirings with semilattice additive operation defined by two-generated ideal of natural numbers
Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 82-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with finite cyclic semirings with a semilattice addition which are defined as finite cyclic multiplicative monoids $\langle S, \cdot \rangle$ with an operation of addition $(+)$ such that the algebraic structure $\langle S, + \rangle$ is an upper semilattice and laws of distributivity of multiplication over addition are satisfied. The structure of finite cyclic semirings with a semilattice additive operation defined by a two-generated semiring of nonnegative integers is described. The result of the work is a theorem about a structure of cyclic semirings with the semilattice additive operation defined by a two-generated ideal of non-negative numbers. This fact, in particular, allows to calculate the number of cyclic semirings corresponding to each two-generated ideal of non-negative integers. The method of ideals of a semiring of nonnegative integers is used in the article. Some properties of ideals of semirings of nonnegative integers determining the structure of finite cyclic semirings are obtained. This work complements the research of E. M. Vechtomova and I. V. Orlova where the structure of finite cyclic semirings with idempotent noncommutative addition is described in terms of cyclic semifields and finite cyclic semirings with semilattice addition.
Keywords: finite cyclic semiring, semilattice addition, semiring of non-negative integers, ideal.
@article{CHEB_2020_21_1_a5,
     author = {E. M. Vechtomov and D. V. Chuprakov},
     title = {Finite cyclic semirings with semilattice additive operation defined by two-generated ideal of natural numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {82--100},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a5/}
}
TY  - JOUR
AU  - E. M. Vechtomov
AU  - D. V. Chuprakov
TI  - Finite cyclic semirings with semilattice additive operation defined by two-generated ideal of natural numbers
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 82
EP  - 100
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a5/
LA  - ru
ID  - CHEB_2020_21_1_a5
ER  - 
%0 Journal Article
%A E. M. Vechtomov
%A D. V. Chuprakov
%T Finite cyclic semirings with semilattice additive operation defined by two-generated ideal of natural numbers
%J Čebyševskij sbornik
%D 2020
%P 82-100
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a5/
%G ru
%F CHEB_2020_21_1_a5
E. M. Vechtomov; D. V. Chuprakov. Finite cyclic semirings with semilattice additive operation defined by two-generated ideal of natural numbers. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 82-100. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a5/

[1] Bestuzhev A. S., “Konechnye idempotentnye ciklicheskie polukolca”, Matematicheskij vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona, 2011, no. 13, 71–78

[2] Bestuzhev A. S., Vechtomov E. M., “Cyclic semirings with commutative addition”, Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika, 2015, no. 20, 8–39

[3] Bestuzhev A. S., Vechtomov E. M., Lubyagina I. V., “Polukolca s ciklicheskim umnozheniem”, Mezhdunarodnaya konferenciya "Algebra i matematicheskaya logika", posvyashchennaya 100-letiyu V. V. Morozova, KFU, Kazan, 2011, 51–52

[4] Vedernikova A. V., Chuprakov D. V., “O predstavlenii konechnyh idempotentnyh ciklicheskih polukolec kortezhami celyh chisel”, Matematicheskij vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona, 2017, no. 19, 70–76

[5] Vechtomov E. M., Vvedenie v polukolca, VGPU, Kirov, 2000, 44 pp.

[6] Vechtomov E. M., “Multiplicativity idempotent semirings”, Tekhnologii produktivnogo obucheniya matematike: tradicii i novacii, Arzamasskij filial NNGU, Arzamas, 2016, 130–140

[7] Vechtomov E.M., Orlova I.V., “Cyclic semirings with idempotent noncommutative addition”, Fundamentalnaya i Prikladnaya Matematika, 17:1 (2011), 33–52 | Zbl

[8] Vechtomov E.M., Orlova I.V., “Cyclic Semirings with Nonidempotent Noncommutative Addition”, Fundamentalnaya i Prikladnaya Matematika, 20:6 (2015), 17–41 | DOI

[9] Vechtomov E. M., Orlova I. V., “Idealy i kongruehncii ciklicheskih polukolec”, Vestnik Syktyvkarskogo universiteta. Seria 1: Matematika. Mekhanika. Informatika, 2017, no. 1(22), 29–40 | Zbl

[10] Vechtomov E. M., Orlova I. V., “Konechnye ciklicheskie polukolca bez edinicy”, Algebra i teoriya algoritmov, Vserossijskaya konferenciya, posvyashchennaya 100-letiyu fakul'teta matematiki i komp'yuternyh nauk Ivanovskogo gosudarstvennogo universiteta, sbornik materialov, Ivanovo state university, Ivanovo, 2018, 113–115

[11] Vechtomov E. M., Orlova I. V., CHuprakov D. V., “K teorii mul'tiplikativno ciklicheskih polukolec”, XV Mezhdunarodnaya konferenciya «Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy i prilozheniya», posvyashchennaya stoletiyu so dnya rozhdeniya professora Nikolaya Mihajlovicha Korobova (29 may 2018), TGPU im. L. N. Tolstogo, Tula, 2018, 136–138

[12] Kargapolov M. I., Merzlyakov Y. I., Osnovy teorii grupp, Nauka, M., 1982, 288 pp. | MR

[13] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, v. 1, Mir, M., 1972, 286 pp.

[14] Lidl R., Niderrajter G., Konechnye polya, v. 1, Mir, M., 1988, 430 pp. | MR

[15] Lidl R., Niderrajter G., Konechnye polya, v. 2, Mir, M., 1988, 822 pp. | MR

[16] Lubyagina I. V., “O ciklicheskih polukolcah s nekommutativnym slozheniem”, Trudy Matematicheskogo centra im. N. I. Lobachevskogo, 40, Izdatel'stvo Kazanskogo matematicheskogo obshchestva, Kazan, 2010, 212–215

[17] Noden P., Kitte K., Algebraicheskaya algoritmika s uprazhneniyami i resheniyami, Mir, M., 1999, 720 pp.

[18] Perevoshchikova T. N., “O konechnyh polukolcah”, Vestnik VyatGGU, 2003, no. 8, 135–137

[19] Chermnyh V. V., Nikolaeva O. V., “Ob idealah polukoltca naturalnih chisel”, Matematicheskij vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona, 2009, no. 11, 118–121

[20] Chuprakov D. V., “Konechnye ciklicheskie polukolca s kommutativnym idempotentnym slozheniem, associirovannye s dvuxporozhdennymi idealami polukol'ca naturalnyh chisel”, Mathematical modeling and information technologies (10–11 november 2017, Syktyvkar), Publisher Pitirim Sorokin Syktyvkar State University, Syktyvkar, 2017, 148–152

[21] Chuprakov D. V., Vedernikova A. V., “About structure of finite cyclic semirings vith idempotent commutative addition”, Vestnik Syktyvkarskogo universiteta. Seria 1: Mathematika. Mechanika. Informatika, 2017:2(23), 92–109

[22] Bestugev A. S., Vechtomov E. M., “Multiplicatively cyclic semirings”, XIII Myhaylo Kravchuk's conference, Kiev, 2010, 39

[23] Chuprakov D. V., “Algorithm for constructing finite idempotent cyclic semirings with commutative addition”, Proceedings of the 4th Conference of Mathematical Society of Moldova CMSM4'2017 (June 28-July 2, 2017, Chisinau, Republic of Moldova), 59–62

[24] Durcheva M. I., Trendafilov I. D., “Public key cryptosystem based on max-semirings”, AIP Conference Proceedings, 1497:1 (2012), 357–364 | DOI | MR

[25] He M., Fan P., “A multi-level secret sharing scheme based on semigroup structures”, Journal of Software, 13:2 (2002), 168–175

[26] Kumar G., Saini H., “Novel Noncommutative Cryptography Scheme Using Extra Special Group”, Security and communication networks, 2017 (2017) | DOI

[27] Vandiver H. S., “Note on a simple type of algebra in which cancellation law of addition does not hold”, Bull. Amer. Math. Soc., 40:12 (1934), 914–920 | DOI | MR