On representation varieties of some one-relator products of cyclic groups
Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 62-81

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper representation varieties of two classes of finitely generated groups are investigated. The first class consists of groups with the presentation \begin{gather*} G = \langle a_1,\ldots,a_s,b_1,\ldots,b_k,x_1,\ldots,x_g\mid\\ a_1^{m_1}=\ldots=a_s^{m_s}= x_1^2\ldots x_g^2 W(a_1,\ldots,a_s,b_1,\ldots,b_k)=1\rangle, \end{gather*} where $g\ge 3$, $m_i\ge 2$ for $i=1,\ldots,s$ and $W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ is an element in normal form in the free product of cyclic groups $$ H=\langle a_1\mid a_1^{m_1}\rangle\ast\ldots\ast\langle a_s\mid a_s^{m_s}\rangle\ast\langle b_1\rangle\ast\ldots\ast \langle b_k\rangle. $$ The second class consists of groups with the presentation $$ G(p,q) = \langle a_1,\ldots,a_s,b_1,\ldots,b_k,x_1,\ldots,x_g,t\mid a_1^{m_1}=\ldots=a_s^{m_s}=1,\ tU^pt^{-1}=U^q \rangle, $$ where $p$ and $q$ are integer numbers such that $p>|q|\geq1$, $(p,q)=1$, $m_i\ge 2$ for $i=1,\ldots,s$, $g\ge3$, $U=x_1^2\ldots x_g^2W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ and $W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ is an above defined element. Irreducible components of representation varieties $R_n(G)$ and $R_n(G(p,q))$ are found, their dimensions are calculated and it is proved, that every irreducible component is a rational variety.
Keywords: a group presentation, a representation variety, a dimension of a variety, a rational variety.
@article{CHEB_2020_21_1_a4,
     author = {V. V. Beniash-Kryvets and A. N. Admiralova},
     title = {On representation varieties of some one-relator products of cyclic groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {62--81},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a4/}
}
TY  - JOUR
AU  - V. V. Beniash-Kryvets
AU  - A. N. Admiralova
TI  - On representation varieties of some one-relator products of cyclic groups
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 62
EP  - 81
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a4/
LA  - ru
ID  - CHEB_2020_21_1_a4
ER  - 
%0 Journal Article
%A V. V. Beniash-Kryvets
%A A. N. Admiralova
%T On representation varieties of some one-relator products of cyclic groups
%J Čebyševskij sbornik
%D 2020
%P 62-81
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a4/
%G ru
%F CHEB_2020_21_1_a4
V. V. Beniash-Kryvets; A. N. Admiralova. On representation varieties of some one-relator products of cyclic groups. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 62-81. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a4/