On representation varieties of some one-relator products of cyclic groups
Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 62-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper representation varieties of two classes of finitely generated groups are investigated. The first class consists of groups with the presentation \begin{gather*} G = \langle a_1,\ldots,a_s,b_1,\ldots,b_k,x_1,\ldots,x_g\mid\\ a_1^{m_1}=\ldots=a_s^{m_s}= x_1^2\ldots x_g^2 W(a_1,\ldots,a_s,b_1,\ldots,b_k)=1\rangle, \end{gather*} where $g\ge 3$, $m_i\ge 2$ for $i=1,\ldots,s$ and $W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ is an element in normal form in the free product of cyclic groups $$ H=\langle a_1\mid a_1^{m_1}\rangle\ast\ldots\ast\langle a_s\mid a_s^{m_s}\rangle\ast\langle b_1\rangle\ast\ldots\ast \langle b_k\rangle. $$ The second class consists of groups with the presentation $$ G(p,q) = \langle a_1,\ldots,a_s,b_1,\ldots,b_k,x_1,\ldots,x_g,t\mid a_1^{m_1}=\ldots=a_s^{m_s}=1,\ tU^pt^{-1}=U^q \rangle, $$ where $p$ and $q$ are integer numbers such that $p>|q|\geq1$, $(p,q)=1$, $m_i\ge 2$ for $i=1,\ldots,s$, $g\ge3$, $U=x_1^2\ldots x_g^2W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ and $W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ is an above defined element. Irreducible components of representation varieties $R_n(G)$ and $R_n(G(p,q))$ are found, their dimensions are calculated and it is proved, that every irreducible component is a rational variety.
Keywords: a group presentation, a representation variety, a dimension of a variety, a rational variety.
@article{CHEB_2020_21_1_a4,
     author = {V. V. Beniash-Kryvets and A. N. Admiralova},
     title = {On representation varieties of some one-relator products of cyclic groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {62--81},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a4/}
}
TY  - JOUR
AU  - V. V. Beniash-Kryvets
AU  - A. N. Admiralova
TI  - On representation varieties of some one-relator products of cyclic groups
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 62
EP  - 81
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a4/
LA  - ru
ID  - CHEB_2020_21_1_a4
ER  - 
%0 Journal Article
%A V. V. Beniash-Kryvets
%A A. N. Admiralova
%T On representation varieties of some one-relator products of cyclic groups
%J Čebyševskij sbornik
%D 2020
%P 62-81
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a4/
%G ru
%F CHEB_2020_21_1_a4
V. V. Beniash-Kryvets; A. N. Admiralova. On representation varieties of some one-relator products of cyclic groups. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 62-81. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a4/

[1] Lubotzky A., Magid A., “Varieties of representations of finitely generated groups”, Memoirs AMS, 58, no. 336, 1985, 1–116 | DOI | MR

[2] Rudnick Z., “Representation varieties of solvable groups”, J. Pure Appl. Algebra, 45 (1987), 261–272 | DOI | MR | Zbl

[3] Benyash-Krivets V. V., Platonov V. P., “Character rings of representations of finitely generated groups”, Proc. of the Steklov Institute of Math., 1991, no. 4, 203–213 | MR | Zbl

[4] Benyash-Krivetz V. V., Rapinchuk A. S., Chernousov V. I., “Representation varieties of the fundamental groups of compact orientable surfaces”, Israel J. Math., 93 (1996), 29–71 | DOI | MR | Zbl

[5] Benyash-Krivetz V. V., Chernousov V. I., “Representation varieties of the fundamental groups of compact non-orientable surfaces”, Sbornik: Mathematics, 188:7 (1997), 997–1039 | DOI | MR | Zbl

[6] Benyash-Krivetz V. V., “Representation varieties of non-Euclidean crystallographic groups”, Doklady of the National Academy of Sciences of Belarus, 44:4 (2000), 37–40 | MR

[7] Benyash-Krivetz V. V., “Representation varieties of $F$-groups and their generalizations”, Doklady of the National Academy of Sciences of Belarus, 45:1 (2001), 9–12 | MR | Zbl

[8] Benyash-Krivetz V. V., “Representation varieties of the group $SL_2(\mathbb{Z})$”, Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series, 2001, no. 1, 8–11 | MR

[9] Benyash-Krivets V. V., Govorushko I. O., “Representation and character varieties of the Baumslag-Solitar groups”, Proc. of the Steklov Institute of Math., 92 (2016), 20–36 | DOI | MR | Zbl

[10] Benyash-Krivets V. V., Govorushko I. O., “Representation varieties of the Baumslag-Solitar groups in the case of not coprime exponents”, Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series, 2016, no. 1, 52–56

[11] Dudkin F. A., “Subgroups of finite index in Baumslag-Solitar groups”, Algebra and Logic, 49:3 (2010), 221–232 | DOI | MR | Zbl

[12] Dudkin F. A., “Irreducible representations of subgroups of finite index in Baumslag-Solitar groups”, Siberian Math. J., 54:6 (2013), 1013–1017 | DOI | MR | Zbl

[13] Benyash-Krivets V. V., Govorushko I. O., “Representation varieties of finite index subgroups of the Baumslag-Solitar groups”, Trudy Inst. Math., 23:2 (2015), 24–28 | MR | Zbl

[14] Admiralova A. N., Benyash-Krivets V. V., “On representation varieties and characters of one class of groups with one relation”, Vestn. Belarus. Gos. Univ. Ser. 1, Fiz. Mat. Inform., 2016, no. 3, 166–172

[15] Admiralova A. N., Benyash-Krivets V. V., “On representation varieties of some HNN-extensions of free groups”, Journal of the Belarusian State University. Mathematics and Informatics, 2018, no. 2, 10–16 (Russian) | MR | Zbl

[16] Fine B., Rosenberger G., Algebraic generalizations of discrete groups. A path to combinatorial group theory through one-relator products, Marcel Dekker, New York–Basel, 1999 | MR | Zbl

[17] Springer T. A., “Conjugacy classes”, Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Mathematics, 131, Springer-Verlag, Berlin–Heidelberg, 1970 | MR | Zbl

[18] Mumford D., Algebraic Geometry, v. 1, Complex Projective Varietie, Springer, Berlin, 1976 | MR | Zbl

[19] Hall M., Combinatorial Theory, John Wiley Sons Inc, 1975 | MR | MR

[20] Gantmacher F. R., The Theory of Matrices, AMS Chelsea Publ., Providence, RI, 1998 | MR | MR