Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_1_a3, author = {A. Ya. Belov-Kanel and A. M. Elishev and F. Razavinia and Yu Jie-Tai and Wenchao Zhang}, title = {Noncommutative {Bia\l{}ynicki--Birula} theorem}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {51--61}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a3/} }
TY - JOUR AU - A. Ya. Belov-Kanel AU - A. M. Elishev AU - F. Razavinia AU - Yu Jie-Tai AU - Wenchao Zhang TI - Noncommutative Bia\l{}ynicki--Birula theorem JO - Čebyševskij sbornik PY - 2020 SP - 51 EP - 61 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a3/ LA - en ID - CHEB_2020_21_1_a3 ER -
A. Ya. Belov-Kanel; A. M. Elishev; F. Razavinia; Yu Jie-Tai; Wenchao Zhang. Noncommutative Bia\l{}ynicki--Birula theorem. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 51-61. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a3/
[1] T. Asanuma, “Non-linearizable $k^*$-actions in affine space”, Invent. Math., 138 (1999), 281–306 | DOI | MR | Zbl
[2] A. Belov-Kanel, M. Kontsevich, “Automorphisms of the Weyl algebra”, Lett. Math. Phys., 74:2 (2005), 181–199 | DOI | MR | Zbl
[3] A. Białynicki-Birula, “Remarks on the action of an algebraic torus on $k^{n}$”, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astro. Phys., 14 (1966), 177–181 | MR
[4] A. Białynicki-Birula, “Remarks on the action of an algebraic torus on $k^{n}$. II”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astro. Phys., 15 (1967), 123–125 | MR | Zbl
[5] A. Białynicki-Birula, “Some theorems on actions of algebraic groups”, Ann. Math. Second Series, 98:3 (1973), 480–497 | DOI | MR | Zbl
[6] M. Brion, “Introduction to actions of algebraic groups”, Les cours du CIRM, 1:1 (2010), 1–22 | DOI
[7] A. Elishev, Automorphisms of polynomial algebras, quantization and Kontsevich conjecture, PhD Thesis, 2019 (in Russian)
[8] A. Gutwirth, “The action of an algebraic torus on the affine plane”, Trans. Amer. Math. Soc., 105:3 (1962), 407–414 | DOI | MR | Zbl
[9] T. Kambayashi, P. Russell, “On linearizing algebraic torus actions”, J. Pure and Applied Algebra, 23:3 (1982), 243–250 | DOI | MR | Zbl
[10] A. Kanel-Belov, A. Elishev, J.-T. Yu, Augmented polynomial symplectomorphisms and quantization, 2018, arXiv: 1812.02859
[11] A. Kanel-Belov, A. Elishev, J.-T. Yu, Independence of the B-KK isomorphism of infinite prime, 2015, arXiv: 1512.06533 | Zbl
[12] A. Kanel-Belov, S. Grigoriev, A. Elishev, J.-T. Yu, W. Zhang, “Lifting of Polynomial Symplectomorphisms and Deformation Quantization”, Commun. in Algebra, 46 (2018), 3926–3938 | DOI | MR | Zbl
[13] A. Kanel-Belov, J.-T. Yu, A. Elishev, “On the Augmentation Topology on Automorphism Groups of Affine Spaces and Algebras”, Int. J. Alg. Comp., 28:08 (2018), 1449–1485 | DOI | MR | Zbl
[14] M. Koras, P. Russell, “$C^*$-actions on $C^3$: The smooth locus of the quotient is not of hyperbolic type”, J. Alg. Geom., 8:4 (1999), 603–694 | MR | Zbl
[15] G. Schwarz, “Exotic algebraic group actions”, C. R. Acad. Sci. Paris Ser. I, 309 (1989), 89–94 | MR | Zbl
[16] N. T. Zung, Torus actions and integrable systems, 2004, arXiv: math/0407455 | MR