About the Russian scientific school of diophantine approximations
Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 388-403.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theory of diophantine approximations, as a branch of mathematics, began to take shape in the 19th century. A significant contribution to its development was made by Russian and Soviet mathematicians. In this paper, we give a historical review of some results in the field of Diophantine approximations obtained by the Russian scientific school of number theory. One of the first, P. L. Chebyshev became interested in the problems of the theory of diophantine approximations in the second half of the 19th century. These studies were continued by his students A. N. Korkin and E. N. Zolotarev. In 1880 academician A. A. Markov (the student of A. N. Korkin) in his master thesis brilliantly solved the problem of describing classes of poorly approximating indefinite quadratic forms. Another student of P. L. Chebyshev — G. F. Voronoj, along with G. Minkowski, laid the foundations for a new, closely related to Diophantine approximations section of mathematics — the geometry of numbers. A. I. Hinchin made a significant contribution to the development of the metric theory of continued fractions. In 1936, he obtained the Khinchin constant — the value of the geometric mean of the decomposition into a continued fraction, for almost all real numbers. The awesomeness of this fact is noted by mathematicians around the world. A significant contribution to the development of the metric theory of diophantine approximations belongs to Belarusian mathematicians. In 1964 V. G. Sprindzhuk obtained a proof of the hypothesis on the measure of the set of $S$-numbers. Research in this area was continued by V. I. Bernik. Interesting results in the field of geometry of numbers and the approximation properties of algebraic numbers were obtained in the 70–80s of the XX century by B. F. Skubenko. In particular his work presents an estimate of the constant of the best Diophantine approximations for the two-dimensional case. Research in the field of approximation of real numbers and the theory of continued fractions was continued in the 1990–2010s by N. G. Moshchevitin, O. N. German, A. D. Bruno, N. M. Dobrovol'skii and N. N. Dobrovol'skii.
Keywords: history of diophantine approximations, Russian school of number theory.
@article{CHEB_2020_21_1_a27,
     author = {Yu. A. Basalov},
     title = {About the {Russian} scientific school of diophantine approximations},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {388--403},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a27/}
}
TY  - JOUR
AU  - Yu. A. Basalov
TI  - About the Russian scientific school of diophantine approximations
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 388
EP  - 403
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a27/
LA  - ru
ID  - CHEB_2020_21_1_a27
ER  - 
%0 Journal Article
%A Yu. A. Basalov
%T About the Russian scientific school of diophantine approximations
%J Čebyševskij sbornik
%D 2020
%P 388-403
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a27/
%G ru
%F CHEB_2020_21_1_a27
Yu. A. Basalov. About the Russian scientific school of diophantine approximations. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 388-403. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a27/

[1] Barber C. B., Dobkin D. P., Huhdanpaa H. T., “The Quickhull algorithm for convex hulls”, ACM Trans. on Mathematical Software, 22:4 (1996), 469–483 | DOI | MR | Zbl

[2] Beresnevich V. V., “On approximation of real numbers by real algebraic numbers”, Acta Arithmetica, 90 (1999), 97–112 | DOI | MR | Zbl

[3] Cassels J. W. S., “Simultaneous Diophantine approximation”, J. London Math. Soc., 30 (1955), 119–121 | DOI | MR | Zbl

[4] Dirichlet L. G. P., “Verallgemeinerung eines Satzes aus der Lehre von den Kettenbruchen nebst einigen Anwendungen auf die Theorie der Zahlen”, S. B. Preuss. Akad. Wiss., 1842, 93–95

[5] Dobrovol'skii N. M., Balaba I. N., Rebrova I. Yu., Dobrovol'skii N. N., “On Lagrange algorithm for reduced algebraic irrationalities”, Bul. Acad. Stiinte Repub. Mold. Mat., 2016, no. 2, 27–39 | MR | Zbl

[6] Finch S. R., Mathematical Constants, Encyclopedia of Mathematics and its Applications, 94, Cambridge University Press, 2003 | MR | Zbl

[7] German O. N., “On Diophantine exponents and Khintchine's transference principle”, Moscow Journal of Combinatorics and Number Theory, 2:2 (2012), 22–51 | MR | Zbl

[8] Hermite C., “Sur une extension donnee a la theorie des fractions continues par M. Tchebychev”, J. reine angew. Math., 88 (1879), 10–15 | MR

[9] Korkine A., Zolotareff G., “Sur les formes quadratiques”, Mathematische Annalen, 6 (1873), 366–389 | DOI | MR | Zbl

[10] Lagarias J. S., “Best simultaneous Diophantine approximation I. Growth rates of best approximation denominators”, Trans. Amer. Math. Soc., 272 (1982), 545–554 | MR | Zbl

[11] Minkovski H., Geometrie der Zahlen, Teubner, Berlin, 1896 | MR

[12] Mordell L., “Lattice points in some n-dimensional non-convex regions. I; II”, Kon. Nederl. Akad. Wetensch. Proc. Sect. Sci., 49 (1946), 773–781 ; 782–792 | MR | Zbl

[13] Nowak W. G., “A remark concerning the s-dimensional simultaneous Diophantine approximation constants”, Graz. Math. Ber., 318 (1993), 105–110 | MR | Zbl

[14] Schmidt W. M., “Simultaneous approximation to algebraic numbers by rationals”, Acta Math., 125 (1970), 189–201 | DOI | MR | Zbl

[15] Spohn W. G., “Blichfeldt's theorem and simultaneous Diophantine approximation”, Amer. J. Math., 90 (1968), 885–894 | DOI | MR | Zbl

[16] Basalov Yu. A., “On the history of estimates of the constant of the best joint diophantine approximations”, Chebyshevskii sbornik, 19:2 (2018), 388–405 | DOI

[17] Bernik V. I., “Metric theorem on the joint approximation of zero by values of integer polynomials”, Izv. USSR Academy of Sciences, Ser. math., 44:1 (1980), 24–45 | MR | Zbl

[18] Bernik V. I., “Proof of A. Baker's conjecture in the metric theory of transcendental numbers”, Dokl. USSR Academy of Sciences, 277:5 (1984), 1036–1039 | MR | Zbl

[19] Bernik V. I., “On the exact order of approximation of zero by the values of integer polynomials”, Acta Arithmetica, 53 (1989), 17–28 | DOI | Zbl

[20] Bernik V. I., Borbat V. N., “Joint approximation of zero by the values of integer polynomials”, Proceedings of the Steklov Mathematical Institute, 218, 1997, 58–73 | Zbl

[21] Bruno A. D., Parusnikov V. I., “Klein polyhedra for two cubic forms of Davenport”, Math. notes, 56 (1994), 9–27 | Zbl

[22] Bruno A. D., Parusnikov V. I., “Comparison of different generalizations of continued fractions”, Math. notes, 61 (1997), 339–348 | Zbl

[23] Bruno A. D., “Generalized continued fraction algorithm”, Keldysh Institute preprints, 2004, 045

[24] Bruno A. D., “The structure of the best diophantine approximations”, Proceedings FAS, 402:4 (2005)

[25] Bruno A. D., “Generalized continued fraction algorithm”, Proceedings FAS, 402:6 (2005)

[26] Bruno A. D., “Universal generalization of the continued fraction algorithm”, Chebyshevskii sbornik, 16 (2015), 35–65 | MR

[27] Bruno A. D., “Calculation of the basic units of number rings using a generalized continued fraction”, Programming, 2019, no. 2, 17–31

[28] Venkov B. A., “On the Markov extremal problem for indefinite trigeminal quadratic forms”, Izv. USSR Academy of Sciences, Ser. math., 9:6 (1945), 429–494 | Zbl

[29] Voronoj G. F., “On a generalization of the algorithm for continued fractions”, Collected Works, v. 1, Publishing house of the Academy of Sciences of Ukraine SSR, Kiev, 1952, 200–394 | MR

[30] Voronoj G. F., “On some properties of positive perfect quadratic forms”, Collected Works, v. 2, Publishing house of the Academy of Sciences of Ukraine SSR, Kiev, 1952, 174–241 | MR

[31] German O. N., “Poorly approximate matrices and Diophantine exponents”, Chebyshevskii sbornik, 14:4 (2013), 38–79 | MR | Zbl

[32] German O N., “Diophantine exponents of lattices”, Modern problem of math., no. 2016, 35–42

[33] Glazunov N. M., Golovanov A. S., Malyshev A. V., “Proof of the Minkowski conjecture on the critical determinant of a domain $|x|^p+|y|^p1$”, Notes of the LOMI Scientific Seminar, 151, 1986, 40–53 | Zbl

[34] Grishmanovskaya K. I., Malyshev A. V., Pachev U. M., Fidarova A. M., “Proof of the Minkowski conjecture on the critical determinant of the domain $|x|^p+|y|^p1$ in the case $5

6$”, Notes of the LOMI Scientific Seminar, 67, 1977, 95–107

[35] Delone B. N., “On the work of A. A. Markov "On binary quadratic forms of positive determinants"”, Uspekhi Mat. Nauk, 3:5 (1948), 3–5 | MR | Zbl

[36] Dobrovol'skii N. M., Dobrovol'skii N. N., “On minimal polynomials of residual fractions for algebraic irrationalities”, Chebyshevskii sbornik, 16:3 (2015), 147–182 | MR | Zbl

[37] Dobrovol'skii N. M., Dobrovol'skii N. N., Sobolev D. K., Soboleva V. N., “Classification of purely real algebraic irrationalities”, Chebyshevskii sbornik, 18:2 (2017), 98–128 | MR | Zbl

[38] Malyshev A. V., “On the representation of integers by positive quadratic forms”, Transactions of Steklov Mathematical Institute of the USSR, 65, 1962, 3–212

[39] Malyshev A. V., “Mordell method of reciprocal lattices in the geometry of numbers”, Notes of the LOMI Scientific Seminar, 33, 1973, 97–115 | Zbl

[40] Markov A. A., “On binary quadratic forms positive determinant”, Selected Works, USSR Academy of Sciences, 1880, 9–85 | MR

[41] Markov A. A., “On indefinite trigeminal quadratic forms”, Proceedings of the Imperial Academy of Sciences, 14:5 (1901), 509–523

[42] Markov A. A., “On indefinite quadratic forms with four variables”, Proceedings of the Imperial Academy of Sciences, 16:3 (1902), 97–108

[43] Moshchevitin N. G., “On joint approximations of algebraic numbers”, Mat. notes, 51 (1992), 72–80

[44] Moshchevitin N. G., “On joint diophantine approximations. Vectors of a given Diophantine type”, Mat. notes, 61 (1997), 706–716

[45] Moshchevitin N. G., “To the Blichfeldt-Mullender-Spohn theorem on simultaneous approximations”, Proceedings of the Steklov Mathematical Institute, 239, 2002, 268–274

[46] Moshchevitin N. G., “On the best two-dimensional joint Diophantine approximations in the $\sup$-norm”, Bulletin of the Moscow University, Ser. 1, 6 (2005), 50–53 | Zbl

[47] Podsypanin E. V., “On a generalization of the continued fraction algorithm associated with the Wiggo Brun algorithm”, Notes of the LOMI Scientific Seminar, 67, 1977, 184–194 | MR | Zbl

[48] Podsypanin E. V., “On the length of the period of quadratic irrationality”, Notes of the LOMI Scientific Seminar, 82, 1979, 95–99 | MR | Zbl

[49] Podsypanin E. V., “The number of integer points in an elliptic region (remark on a theorem of A. V. Malyshev)”, Notes of the LOMI Scientific Seminar, 82, 1979, 100–102 | MR | Zbl

[50] Skubenko B. F., “To the Minkowski conjecture for $ n = 5 $”, Dokl. USSR Academy of Sciences, 205 (1972), 1304–1305 | MR | Zbl

[51] Skubenko B. F., “Proof of the Minkowski hypothesis on the product of $ n $ linear inhomogeneous forms of $ n $ variables for $n \leq 5$”, Notes of the LOMI Scientific Seminar, 33, 1973, 6–36 | MR | Zbl

[52] Skubenko B. F., “A new version of the proof of the heterogeneous Minkowski hypothesis for $n=5$”, Proceedings of the Steklov Mathematical Institute of the USSR, 142, 1976, 240–253 | MR | Zbl

[53] Skubenko B. F., “To the Minkowski conjecture for large $n$”, Proceedings of the Steklov Mathematical Institute of the USSR, 148, 1978, 218–224 | MR | Zbl

[54] Skubenko B. F., “To joint approximations of algebraic irrationalities”, Notes of the LOMI Scientific Seminar, 116, 1982, 142–154 | Zbl

[55] Skubenko B. F., “To the generalized Roth-Schmidt theorem”, Notes of the LOMI Scientific Seminar, 134, 1984, 226–231 | MR | Zbl

[56] Sprindzhuk V. G., “Proof of Mahler's conjecture on the measure of the set of S-numbers”, Izv. USSR Academy of Sciences, Ser. math., 29:2 (1965), 379–436 | MR | Zbl

[57] Sprindzhuk V. G., “Finiteness of the number of rational and algebraic points on some transcendental curves”, Dokl. USSR Academy of Sciences, 177:3 (1967), 524–527 | Zbl

[58] Sprindzhuk V. G., “Irrationality of values some transcendental functions”, Izv. USSR Academy of Sciences, Ser. math., 32:1 (1968), 93–107

[59] Sprindzhuk V. G., “Achievements and problems of theory Diophantine approximations”, Advances in Mathematical Sciences, 35:4 (1980), 3–68 | MR | Zbl

[60] Hinchin A. I., “Metric problems of the theory of irrational numbers”, Advances in Mathematical Sciences, 1936, no. 1, 7–32 | Zbl

[61] Hinchin A. I., “Dirichlet principle in the theory of diophantine approximations”, Advances in Mathematical Sciences, 3:3 (1948), 3–28

[62] Hinchin A. I., Continued fractions, Mir, 1961; Чебышев П. Л. Избранные труды, Изд. АН СССР, М., 1955, 55–105 | MR

[63] Chebyshev P. L., On an arithmetic question, 1866 ; Selected Works, USSR Academy of Sciences, 1955, 55–105 | MR

[64] Chebotarev N. G., “Zametki po algebre i teorii chisel”, Uch. zap. KGU, 1934; Чеботарев Н. Г. Собрание сочинений, т. 1, Изд. АН СССР, М.–Л., 1949, 208–221 [Chebotarev N. G., Notes on algebra and number theory, 1934]; Collected Works, v. 1, USSR Academy of Sciences, 208–221 | MR