Minimal morsifications for functions of two real variables
Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 381-387.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we give an explicit construction of morsifications with the smallest topologically possible number of real critical points for functions of two variables with smooth level-set branches, as well as for semiquasihomogenous functions of two real variables.
Keywords: curve singularities, deformations of singularities, real curves, semiquasihomogenous functions.
@article{CHEB_2020_21_1_a26,
     author = {I. A. Proskurnin},
     title = {Minimal morsifications for functions of two real variables},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {381--387},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a26/}
}
TY  - JOUR
AU  - I. A. Proskurnin
TI  - Minimal morsifications for functions of two real variables
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 381
EP  - 387
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a26/
LA  - ru
ID  - CHEB_2020_21_1_a26
ER  - 
%0 Journal Article
%A I. A. Proskurnin
%T Minimal morsifications for functions of two real variables
%J Čebyševskij sbornik
%D 2020
%P 381-387
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a26/
%G ru
%F CHEB_2020_21_1_a26
I. A. Proskurnin. Minimal morsifications for functions of two real variables. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 381-387. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a26/

[1] V. I. Arnol'd, “Index of a singular point of a vector field, the Petrovskii-Oleinik inequality, and mixed Hodge structures”, Funct. Anal. Appl., 12:1 (1978), 1–12 | Zbl

[2] Gusein-Zade S. M., “On a problem of B. Teissier”, Topics in Singularity Theory, V. I. Arnold's 60th Anniversary Collection, eds. A. Khovanskii, A. Varchenko, V. Vassiliev, Am. Math. Soc., Providence, Rhode Island, 1997, 117–141 | MR

[3] Gusein-Zade S. M., “On the Existence of Deformations without Critical Points (the Teissier problem for functions of two variables)”, Funct. Anal. Appl., 31:1 (1997), 58–60 | DOI | MR | Zbl

[4] Gonzalez-Ramirez J. A., Luengo I., “Deformations of functions without real critical points”, Communications in Algebra, 31:9 (2003), 42–55 | DOI | MR

[5] Casas-Alvero E., Singularities of plane curves, Cambridge university press, New York, 2000 | MR | Zbl

[6] Milnor J., Singular Points of Complex Hypersurfaces, Princeton university press, Princeton, New Jersey, 1968 | MR | Zbl

[7] Damon J., “On the number of branches for real and complex weighted homogeneous curve singularities”, Topology, 30:2 (1991), 223–229 | DOI | MR | Zbl