Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_1_a26, author = {I. A. Proskurnin}, title = {Minimal morsifications for functions of two real variables}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {381--387}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a26/} }
I. A. Proskurnin. Minimal morsifications for functions of two real variables. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 381-387. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a26/
[1] V. I. Arnol'd, “Index of a singular point of a vector field, the Petrovskii-Oleinik inequality, and mixed Hodge structures”, Funct. Anal. Appl., 12:1 (1978), 1–12 | Zbl
[2] Gusein-Zade S. M., “On a problem of B. Teissier”, Topics in Singularity Theory, V. I. Arnold's 60th Anniversary Collection, eds. A. Khovanskii, A. Varchenko, V. Vassiliev, Am. Math. Soc., Providence, Rhode Island, 1997, 117–141 | MR
[3] Gusein-Zade S. M., “On the Existence of Deformations without Critical Points (the Teissier problem for functions of two variables)”, Funct. Anal. Appl., 31:1 (1997), 58–60 | DOI | MR | Zbl
[4] Gonzalez-Ramirez J. A., Luengo I., “Deformations of functions without real critical points”, Communications in Algebra, 31:9 (2003), 42–55 | DOI | MR
[5] Casas-Alvero E., Singularities of plane curves, Cambridge university press, New York, 2000 | MR | Zbl
[6] Milnor J., Singular Points of Complex Hypersurfaces, Princeton university press, Princeton, New Jersey, 1968 | MR | Zbl
[7] Damon J., “On the number of branches for real and complex weighted homogeneous curve singularities”, Topology, 30:2 (1991), 223–229 | DOI | MR | Zbl