Minimal morsifications for functions of two real variables
Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 381-387
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we give an explicit construction of morsifications with the smallest topologically possible number of real critical points for functions of two variables with smooth level-set branches, as well as for semiquasihomogenous functions of two real variables.
Keywords:
curve singularities, deformations of singularities, real curves, semiquasihomogenous functions.
@article{CHEB_2020_21_1_a26,
author = {I. A. Proskurnin},
title = {Minimal morsifications for functions of two real variables},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {381--387},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a26/}
}
I. A. Proskurnin. Minimal morsifications for functions of two real variables. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 381-387. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a26/