On a mean-value theorem for multiple trigonometric sums
Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 341-356.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mean-value theorem for multiple trigonometric generalizing from the G. I. Arkhipov's theorem [12, 13] was proved. The first theorem of the similar type lies in the core of the I. M. Vinogradov's method [2]. In the paper the version of theorem with “similar” lengths of changing intervals of variables. Estimates of zeta-sums of the form $$ \sum_{n\leq P}n^{it}. $$ are the interesting application of the I.M.Vinogradov's method. The similar application of the mean-value theorem proving by us serve the estimate of sums of the form $$ \sum_{n\leq P_1}\dots\sum_{n\leq P_r}(n_1\dots n_r+k)^{it}, \sum_{n\leq P}\tau_s(n)(n+k)^{it}, \sum_{p\leq P}(p+k)^{it}. $$
Keywords: the mean-value theorem of I. M. Vinigradov and G. I. Arkhipov, the multivariate divisor function, prime numbers, the zeta-sum.
@article{CHEB_2020_21_1_a21,
     author = {V. N. Chubarikov},
     title = {On a mean-value theorem for multiple trigonometric sums},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {341--356},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a21/}
}
TY  - JOUR
AU  - V. N. Chubarikov
TI  - On a mean-value theorem for multiple trigonometric sums
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 341
EP  - 356
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a21/
LA  - ru
ID  - CHEB_2020_21_1_a21
ER  - 
%0 Journal Article
%A V. N. Chubarikov
%T On a mean-value theorem for multiple trigonometric sums
%J Čebyševskij sbornik
%D 2020
%P 341-356
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a21/
%G ru
%F CHEB_2020_21_1_a21
V. N. Chubarikov. On a mean-value theorem for multiple trigonometric sums. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 341-356. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a21/

[1] Littlewood J. E., “Researches in the theory of Riemann $\zeta$-function”, Proc. London Math. Soc. (2), 20 (1922), XXII–XXVIII | MR

[2] Vinogradov I. M., The method of trigonometric sums in the theory of numbers, 2nd Edition, correct. and supplement, Fizmatlit, M., 1980, 144 pp.

[3] Vinogradov I. M., “The new estimation of function $\zeta(1+it)$”, Izvestija. AN SSSR, Ser. Mathem., 22:2 (1958), 161–164 | MR | Zbl

[4] Vinogradov I. M., “To the question on the estimation of trigonometric sums”, Izvestija. AN SSSR, Ser. Mathem., 29:3 (1965), 493–504 | Zbl

[5] Chudakov N. G., “On functions $\zeta(s)$ and $\pi(x)$”, Doklady AN SSSR, 21 (1938), 425–426

[6] Titchmarsh E. C., “On $\zeta(s)$ and $\pi(x)$”, Quart. J. Math., 9 (1938), 97–108 | DOI

[7] Linnik J. V., “New estimation of Weyl's sums”, Doklady AN SSSR, 34:7 (1942) | Zbl

[8] Korobov N. M., “Estimations of trigonometric sums and their applications”, Uspehi mathem. nauk, 13:4 (1958), 185–192 | MR | Zbl

[9] Walfisz A., Weylsche Exponentialsummen in der Neueren Zahlentheorie, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963, 231 | MR | Zbl

[10] Karatsuba A. A., Korobov N. M., “On the mean-value theorem”, Doklady AN SSSR, 149:2 (1963) | Zbl

[11] Karatsuba A. A., “Mean-value theorem and complete trigonometric sums”, Izvestija. AN SSSR, Ser. Mathem., 30:1 (1966) | Zbl

[12] Arkhipov G. I., “Multiple trigonometric sums”, Doklady AN SSSR, 219:5 (1974) | Zbl

[13] Arkhipov G. I., Selected papers, Publ. House of the Orjol University, Orjol, 2013, 464 pp.

[14] Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., The theory of multiple trigonometric sums, Nauka. Fizmatlit, M., 1987, 368 pp. | MR

[15] Arkhipov G. I., Chubarikov V. N., Karatsuba A. A., Trigonometric sums in number theory and analysis, De Gruyter expositions in mathematics, 39, Walter de Gruyter, Berlin–New York, 2004, 554 pp. | MR | Zbl

[16] Chubarikov V. N., “Multiple trigonometric sums with primes”, Doklady AN SSSR, 278:2 (1984), 302–304 | MR | Zbl

[17] Chubarikov V. N., “Estimates of multiple trigonometric sums with primes”, Izvestija. AN SSSR, Ser. Matem., 49:5 (1985), 1031–1067 | MR | Zbl