Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_1_a20, author = {G. V. Fedorov}, title = {On families of hyperelliptic curves over the field of rational numbers, whose {Jacobian} contains torsion points of given orders}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {322--340}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a20/} }
TY - JOUR AU - G. V. Fedorov TI - On families of hyperelliptic curves over the field of rational numbers, whose Jacobian contains torsion points of given orders JO - Čebyševskij sbornik PY - 2020 SP - 322 EP - 340 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a20/ LA - ru ID - CHEB_2020_21_1_a20 ER -
%0 Journal Article %A G. V. Fedorov %T On families of hyperelliptic curves over the field of rational numbers, whose Jacobian contains torsion points of given orders %J Čebyševskij sbornik %D 2020 %P 322-340 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a20/ %G ru %F CHEB_2020_21_1_a20
G. V. Fedorov. On families of hyperelliptic curves over the field of rational numbers, whose Jacobian contains torsion points of given orders. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 322-340. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a20/
[1] Mazur B., “Rational points on modular curves”, Modular Funct. one Var. V, Proc. Int. Conf. (Bonn, 1976), Lect. Notes Math., 601, 1977, 107–148 | DOI | MR | Zbl
[2] Kubert D. S., “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc. (3), 33:2 (1976), 193–237 | DOI | MR | Zbl
[3] Kubert D. S., “Universal bounds on the torsion of elliptic curves”, Compositio Mathematica, 38:1 (1979), 121–128 | MR | Zbl
[4] Adams W. W., Razar M. J., “Multiples of points on elliptic curves and continued fractions”, Proc. London Math. Soc., 41:3 (1980), 481–498 | DOI | MR | Zbl
[5] Van Der Poorten A. J., Tran X. C., “Periodic continued fractions in elliptic function fields”, International Algorithmic Number Theory Symposium, Springer, Berlin–Heidelberg, 2002, 390–404 | MR | Zbl
[6] Platonov V. P., Fedorov G. V., “On the periodicity of continued fractions in elliptic fields”, Dokl. Math., 96:1 (2017), 332–335 | DOI | MR | Zbl
[7] Platonov V. P., Fedorov G. V., “On the problem of periodicity of continued fractions in hyperelliptic fields”, Sb. Math., 209:4 (2018), 519–559 | DOI | MR | Zbl
[8] Platonov V. P., Fedorov G. V., “The criterion of the periodicity of continued fractions of key elements in hyperelliptic fields”, Chebyshevskii Sbornik, 20:1 (2019), 246–258 (In Russ.)
[9] Fedorov G. V., “On boundedness of period lengths of continued fractions of key elements hyperelliptic fields over the field of rational numbers”, Chebyshevskii Sbornik, 20:4 (2019), 321–334 (In Russ.)
[10] Kamienny S., “Torsion points on elliptic curves over all quadratic fields”, Duke Math. J., 53:1 (1986), 157–162 | DOI | MR | Zbl
[11] Kenku M. A., Momose F., “Torsion points on elliptic curves defined over quadratic fields”, Nagoya Math. J., 109 (1988), 125–149 | DOI | MR | Zbl
[12] Platonov V. P., Zhgoon V. S., Fedorov G. V., “On the Periodicity of Continued Fractions in Hyperelliptic Fields over Quadratic Constant Field”, Dokl. Math., 98:2 (2016), 430–434 | DOI | MR
[13] Platonov V. P., Zhgoon V. S., Petrunin M. M., Shteinikov Yu. N., “On the Finiteness of Hyperelliptic Fields with Special Properties and Periodic Expansion of $\sqrt{f}$”, Dokl. Math., 98:3 (2018), 641–645 | DOI | Zbl
[14] Platonov V. P., Petrunin M. M., Shteinikov Yu. N., “On the Finiteness of the Number of Elliptic Fields with Given Degrees of S-Units and Periodic Expansion of $\sqrt{f}$”, Dokl. Math., 100:2 (2019), 1–5 | DOI | MR | Zbl
[15] Merel L., “Bornes pour la torsion des courbes ellipticques sur les corps de nombers”, Invent. Math., 124:1–3 (1996), 437–449 | DOI | MR | Zbl
[16] Howe E. W., “Genus-2 Jacobians with torsion points of large order”, Bull. London Math. Soc., 47 (2015), 127–135 | DOI | MR | Zbl
[17] Platonov V. P., “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russian Math. Surveys, 69:1 (2014), 1–34 | MR | Zbl
[18] Petrunin M. M., “Calculation of the fndamental S-units in hyperelliptic fields of genus 2 and the torsion problem in the jacobians of hyperelliptic curves”, Chebyshevskii Sbornik, 16:4 (2015), 250–283 (In Russ.) | MR | Zbl
[19] Platonov V. P., Fedorov G. V., “An infinite family of curves of genus 2 over the field of rational numbers whose jacobian varieties contain rational points of order 28”, Dokl. Math., 98:2 (2018), 468–471 | DOI | Zbl
[20] Benyash-Krivets V. V., Platonov V. P., “Groups of S-units in hyperelliptic fields and continued fractions”, Sb. Math., 200:11 (2009), 1587–1615 | Zbl
[21] Platonov V. P., Fedorov G. V., “S-Units and Periodicity of Continued Fractions in Hyperelliptic Fields”, Dokl. Math., 92:3 (2015), 752–756 | DOI | MR | Zbl
[22] Platonov V. P., Petrunin M. M., “S-Units and periodicity in quadratic function fields”, Russian Math. Surveys, 71:5 (2016), 973–975 | DOI | MR | Zbl
[23] Platonov V. P., Petrunin M. M., “S-units in hyperelliptic fields and periodicity of continued fractions”, Dokl. Math., 94:2 (2016), 532–537 | DOI | MR | Zbl
[24] Platonov V. P., Fedorov G. V., “On the periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 95:3 (2017), 254–258 | DOI | MR | Zbl
[25] Platonov V. P., Petrunin M. M., “Groups of S-units and the problem of periodicity of continued fractions in hyperelliptic fields”, Proc. Steklov Inst. Math., 302 (2018), 336–357 | DOI | MR | Zbl
[26] Fedorov G. V., “On S-units for second degree valuations in hyperelliptic fields”, Izv. Ross. Akad. Nauk Ser. Mat., 84:2 (2020) | Zbl
[27] Fedorov G. V., “Periodic continued fractions and S-units with second degree valuations in hyperelliptic fields”, Chebyshevskii Sbornik, 19:3 (2018), 283–298 (In Russ.)
[28] Zhgoon V. S., “On generalized jacobians and rational continued fractions in the hyperelliptic fields”, Chebyshevskii Sbornik, 18:4 (2017), 208–220 (In Russ.) | MR
[29] Platonov V. P., Zhgoon V. S., Fedorov G. V., “Continued Rational Fractions in Hyperelliptic Fields and the Mumford Representation”, Dokl. Math., 94:3 (2016), 692–696 | DOI | MR | Zbl
[30] Kuznetsov Y. V., Shteinikov Y. N., “On some properties of continued periodic fractions with small length of period related with hyperelliptic fields and S-units”, Chebyshevskii Sbornik, 18:4 (2017), 260–267 (In Russ.) | MR