Analytical and number-theoretical properties of the two-dimensional sigma function
Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 9-50
Voir la notice de l'article provenant de la source Math-Net.Ru
This survey is devoted to the classical and modern problems related to the entire function ${\sigma({\mathbf{u}};\lambda)}$, defined by a family of nonsingular algebraic curves of genus $2$, where ${\mathbf{u}} = (u_1,u_3)$ and $\lambda = (\lambda_4, \lambda_6,\lambda_8,\lambda_{10})$. It is an analogue of the Weierstrass sigma function $\sigma({{u}};g_2,g_3)$ of a family of elliptic curves. Logarithmic derivatives of order $2$ and higher of the function ${\sigma({\mathbf{u}};\lambda)}$ generate fields of hyperelliptic functions of ${\mathbf{u}} = (u_1,u_3)$ on the Jacobians of curves with a fixed parameter vector $\lambda$. We consider three Hurwitz series $\sigma({\mathbf{u}};\lambda)=\sum_{m,n\ge0}a_{m,n}(\lambda)\frac{u_1^mu_3^n}{m!n!}$, $\sigma({\mathbf{u}};\lambda) = \sum_{k\ge 0}\xi_k(u_1;\lambda)\frac{u_3^k}{k!}$ and $\sigma({\mathbf{u}};\lambda) = \sum_{k\ge 0}\mu_k(u_3;\lambda)\frac{u_1^k}{k!}$. The survey is devoted to the number-theoretic properties of the functions $a_{m,n}(\lambda)$, $\xi_k(u_1;\lambda)$ and $\mu_k(u_3;\lambda)$. It includes the latest results, which proofs use the fundamental fact that the function ${\sigma ({\mathbf{u}};\lambda)}$ is determined by the system of four heat equations in a nonholonomic frame of six-dimensional space.
Keywords:
Abelian functions, two-dimensional sigma functions, Hurwitz integrality, generalized Bernoulli—Hurwitz number, heat equation in a nonholonomic frame.
@article{CHEB_2020_21_1_a2,
author = {T. Ayano and V. M. Buchstaber},
title = {Analytical and number-theoretical properties of the two-dimensional sigma function},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {9--50},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a2/}
}
TY - JOUR AU - T. Ayano AU - V. M. Buchstaber TI - Analytical and number-theoretical properties of the two-dimensional sigma function JO - Čebyševskij sbornik PY - 2020 SP - 9 EP - 50 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a2/ LA - en ID - CHEB_2020_21_1_a2 ER -
T. Ayano; V. M. Buchstaber. Analytical and number-theoretical properties of the two-dimensional sigma function. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 9-50. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a2/