Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_1_a2, author = {T. Ayano and V. M. Buchstaber}, title = {Analytical and number-theoretical properties of the two-dimensional sigma function}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {9--50}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a2/} }
TY - JOUR AU - T. Ayano AU - V. M. Buchstaber TI - Analytical and number-theoretical properties of the two-dimensional sigma function JO - Čebyševskij sbornik PY - 2020 SP - 9 EP - 50 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a2/ LA - en ID - CHEB_2020_21_1_a2 ER -
T. Ayano; V. M. Buchstaber. Analytical and number-theoretical properties of the two-dimensional sigma function. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 9-50. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a2/
[1] A. Adelberg, “Universal Higher Order Bernoulli Numbers and Kummer and Related Congruences”, J. Number Theory, 84:1 (2000), 119–135 | DOI | MR | Zbl
[2] A. Adelberg, “Kummer Congruences For Universal Bernoulli Numbers And Related Congruences For Poly-Bernoulli Numbers”, Int. Math. J., 1:1 (2002), 53–63 | MR | Zbl
[3] A. Adelberg, “Universal Kummer congruences mod prime powers”, J. Number Theory, 109:2 (2004), 362–378 | DOI | MR | Zbl
[4] T. Ayano, V. M. Buchstaber, “Ultraelliptic integrals and two-dimensional sigma function”, Funct. Anal. Appl., 53:3 (2019), 157–173 | DOI | MR | Zbl
[5] H. F. Baker, “On the hyperelliptic sigma functions”, Amer. J. Math., 20:4 (1898), 301–384 | DOI | MR | Zbl
[6] H. F. Baker, “On a system of differential equations leading to periodic functions”, Acta Math., 27 (1903), 135–156 | DOI | MR | Zbl
[7] H. F. Baker, An introduction to the theory of multiply periodic functions, Cambridge University Press, Cambridge, 1907 http://name.umdl.umich.edu/ACR0014.0001.001 | Zbl
[8] H. F. Baker, Abelian functions. Abel's theorem and the allied theory of theta functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[9] V. M. Buchstaber, “The Chern-Dold Character in Cobordisms, I”, Math. USSR Sbornik, 12:4 (1970), 573–594 | DOI | MR
[10] V. M. Buchstaber, “Polynomial dynamical systems and the Korteweg-de Vries equation”, Proc. Steklov Inst. Math., 294 (2016), 176–200, arXiv: 1605.04061 | DOI | MR | Zbl
[11] V. M. Buchstaber, E. Yu. Bunkova, Lie algebras of heat operators in nonholonomic frame, 28 Nov 2019, arXiv: 1911.08266v2 [math-ph] | MR
[12] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Hyperelliptic Kleinian functions and applications”, Solitons, Geometry and Topology: On the Crossroad, AMS Trans., 179, no. 2, eds. V. M. Buchstaber, S. P. Novikov, 1997, 1–33 | MR
[13] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Kleinian functions, hyperelliptic Jacobians and applications”, Reviews in Mathematics and Math. Physics, 10, no. 2, eds. I. M. Krichever, S. P. Novikov, Gordon and Breach, London, 1997, 3–120 | MR
[14] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Rational analogues of Abelian functions”, Functional Anal. Appl., 33:2 (1999), 83–94 | DOI | MR | Zbl
[15] V. M. Buchstaber, V. Z. Enolskii, D. V. Leykin, Multi-dimensional sigma functions, 5 Aug 2012, arXiv: 1208.0990 [math-ph]
[16] V. M. Buchstaber, A. V. Ustinov, “Coefficient rings of formal group laws”, Sb. Math., 206:11 (2015), 1524–1563 | DOI | MR | Zbl
[17] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, Multi-variable sigma-functions: old and new results, 25 Oct 2018, arXiv: 1810.11079 [nlin.SI]
[18] V. M. Buchstaber, D. V. Leykin, “Heat Equations in a Nonholonomic Frame”, Funct. Anal. Appl., 38:2 (2004), 88–101 | DOI | MR | Zbl
[19] V. M. Buchstaber, D. V. Leykin, “Addition laws on Jacobian varieties of plane algebraic curves”, Proceedings of the Steklov Math. Inst., 251 (2005), 49–120 | MR | Zbl
[20] V. M. Buchstaber, D. V. Leykin, “Solution of the problem of differentiation of Abelian functions over parameters for families of $(n,s)$-curves”, Funct. Anal. Appl., 42:4 (2008), 268–278 | DOI | MR | Zbl
[21] E. Yu. Bunkova, Weierstrass Sigma Function Coefficients Divisibility Hypothesis, 2017, arXiv: 1701.00848
[22] F. Clarke, “The universal von Staudt theorems”, Transactions of the American Mathematical Society, 315:2 (1989), 591–603 | DOI | MR | Zbl
[23] A. V. Domrin, “Uniqueness theorem for the two-dimensional sigma function”, Funct. Anal. Appl., 54:1 (2020) | DOI | Zbl
[24] J. C. Eilbeck, J. Gibbons, Y. Ônishi, S. Yasuda, Theory of Heat Equations for Sigma Functions, 2018, arXiv: 1711.08395
[25] J. C. Eilbeck, Y. Ônishi, Recursion relations on the power series expansion of the universal Weierstrass sigma function, RIMS Kôkyûroku Bessatsu, 2019
[26] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, 1966 | MR | Zbl
[27] A. Hurwitz, “Ueber die Entwickelungscoefficienten der lemniscatischen Functionen”, Math. Ann., 51 (1898), 196–226 | DOI | MR
[28] F. Klein, “Ueber hyperelliptische Sigmafunctionen”, Math. Ann., 27:3 (1886), 431–464 | DOI | MR
[29] F. Klein, “Ueber hyperelliptische Sigmafunctionen”, Math. Ann., 32:3 (1888), 351–380 | DOI | MR
[30] F. Klein, “Vorbemerkungen zu den Arbeiten über hyperelliptische und Abelsche Funktionen”, Gesammele Mathematische Abhandlungen, v. 3, Teubner, Berlin, 1923, 317–322 | DOI | MR
[31] F. Klein, “Über hyperelliptische Sigmafunktionen”, Gesammelte Mathematische Abhandlungen, v. 3, Teubner, Berlin, 1923, 323–387 | DOI | MR
[32] M. Lazard, “Sur les groupes de Lie formels a un parametre.”, Bull. Soc. Math. France, 83 (1955), 251–274 | DOI | MR | Zbl
[33] A. Nakayashiki, “On algebraic expressions of sigma functions for $(n,s)$ curves”, Asian J. Math., 14:2 (2010), 175–212, arXiv: 0803.2083 | DOI | MR | Zbl
[34] A. Nakayashiki, “Sigma function as a tau function”, Int. Math. Res. Not., 2010:3 (2009), 373–394, arXiv: 0904.0846 | DOI | MR
[35] A. Nakayashiki, “Tau Function Approach to Theta Functions”, Int. Math. Res. Not., 2016:17 (2016), 5202–5248 | DOI | MR | Zbl
[36] S. P. Novikov, “The methods of algebraic topology from the viewpoint of cobordism theory”, Math. USSR-Izv., 1:4 (1967), 827–913 | DOI | MR
[37] Y. Ônishi, Universal elliptic functions (in Japanese) http://www2.meijo-u.ac.jp/ỹonishi/#publications
[38] Y. Ônishi, “Generalized Bernoulli-Hurwitz numbers and the universal Bernoulli numbers”, Russian Mathematical Surveys, 66:5 (2011), 871–932 | DOI | MR | Zbl
[39] Y. Ônishi, “Arithmetical Power Series Expansion of the Sigma Function for a Plane Curve”, Proceedings of the Edinburgh Mathematical Society, 61:4 (2018), 995–1022 | DOI | MR | Zbl
[40] B. P. Platonov, M. M. Petrunin, “On the torsion problem in Jacobians of curves of genus 2 over the rational number field”, Dokl. Math., 86:2 (2012), 642–643 | DOI | MR | Zbl
[41] V. P. Platonov, “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russian Math. Surveys, 69:1 (2014), 1–34 | DOI | MR | Zbl
[42] V. P. Platonov, G. V. Fedorov, “An Infinite Family of Curves of Genus 2 over the Field of Rational Numbers Whose Jacobian Varieties Contain Rational Points of Order 28”, Dokl. Math., 98:2 (2018), 468–471 | DOI | Zbl
[43] D. Quillen, “On the formal group laws of unoriented and complex cobordism theory”, Bull. Amer. Math. Soc., 75:6 (1969), 1293–1298 | DOI | MR | Zbl
[44] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, Springer, 1986 | DOI | MR | Zbl
[45] K. Weierstrass, “Zur theorie der elliptischen functionen”, Mathmatische Werke, 2 (1894), 245–255