Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_1_a18, author = {V. I. Subbotin}, title = {On the completenes of the list of convex $RR$-polyhedra}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {297--309}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a18/} }
V. I. Subbotin. On the completenes of the list of convex $RR$-polyhedra. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 297-309. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a18/
[1] Coxeter H. S., Regular polytopes, London–NY, 1963 | MR | Zbl
[2] Deza M., Grishukhin V. P., Shtogrin M. I., Scale-Isometric Polytopal Graphs in Hypercubes and Cubic Lattices, MCNMO, M., 2008
[3] Emelichev V. A., Kovalev M. M., Kravzov M. K., Polyhedra. Graph. Optimization, Nauka, M., 1981 | MR
[4] Cromwell P. R., Polyhedra, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[5] Grunbaum B., Convex Polytopes, John Wiley Sons, New York, 1967 | MR | Zbl
[6] Johnson N. W., “Convex polyhedra with regular faces”, Can. J. Math., 18:1 (1966), 169–200 | DOI | MR | Zbl
[7] Jurij Kovic, “Centrally symmetric convex polyhedra with regular polygonal faces”, Math. Commun., 18 (2013), 429–440 | MR | Zbl
[8] Zalgaller V. A., “Convex polyhedra with regular faces”, Zapiski nauchnych seminarov LOMI, 2, 1967, 1–220 | MR
[9] Timofeenko A. V., “On convex polyhedra with equiangular and parquet faces”, Chebyshevskiy sbornik, 12:2 (2011), 118–126 | MR | Zbl
[10] Gurin A. M., “On the history of studying convex polyhedra with regular faces”, Sib. electron. math. izv., 7 (2010), A5–A23
[11] Subbotin V. I., “On convex $RR$-polyhedrons with non-triangular faces”, Proc. Int. Conf. “Algebra, number theory and discrete geometry: modern problems, applications and problems of history” (Tula, 2019), 277–278
[12] Субботин В. И., “Об одном классе сильно симметричных многогранников”, Чебышевский сборник, 17:4 (2016), 132–140 | MR | Zbl
[13] Subbotin V. I., “Some generalizations strongly symmetric polyhedra”, Chebyshevskiy sbornik, 16:2 (2015), 222–230 | MR | Zbl
[14] Subbotin V. I., “On Completely symmetrical polyhedra”, Proc. Int. Conf. on discrete geometry and its applications (Moskow, 2001), 88–89
[15] Subbotin V. I., “Convex polyhedra with delthoidal vertices”, Chebyshevskiy sbornik, 19:2 (2018), 489–498
[16] Subbotin V. I., “Characterization of polyhedral partitioning a space”, Voronoy conference on analytic number theory and spatial tessellations (Kiev, September, 22–28 2003), 46
[17] Subbotin V. I., “Polyhedra with the maximum number of asymmetrical faces”, Proc. Int. Conf. "Metric geometry of surfaces and polyhedra" (Moskow, 2010), 60–61
[18] Subbotin V. I., “On symmetric polyhedra with asymmetrical faces”, Proc. Int. Seminar "Discrete Mathematics and Its Applications" (Moskow, 2012), 398–400
[19] Subbotin V. I., “On two classes of polyhedra with rhombic vertices”, Zapiski nauchnych seminarov POMI, 476, 2018, 153–164
[20] Subbotin V. I., “On polyhedra with symmetric rhombic vertices and regular faces”, Proc. Int. Conf. "Classical and modern geometry" (Moskow, 2019), 139–140
[21] Farris S. L., “Completely classifying all vertex-transitive and edge-transitive polyhedra.”, Geometriae Dedicata, 26:1 (1988), 111–124 | DOI | MR | Zbl
[22] Grunbaum B., “Regular polyhedra — old and new”, Aequationes mathematicae, 16:1–2 (1977), 1–20 | DOI | MR | Zbl
[23] Wills J. M., “On polyhedra with transitivity properties”, Discrete and Computational Geometry, 1:3 (1986), 195–199 | DOI | MR | Zbl
[24] Berman M., “Regular-faced Convex Polyhedra”, Journal of The Franklin Institute, 291:5 (1971), 329–352 | DOI | MR | Zbl
[25] Coxeter H. S., “Regular and semi-regular polytopes. II”, Mathematische Zeitschrift, 188:4 (1985), 559–591 | DOI | MR | Zbl
[26] Coxeter H. S., “Regular and semi-regular polytopes. III”, Mathematische Zeitschrift, 200:1 (1988), 3–45 | DOI | MR | Zbl