Nikolskii constant for trigonometric polynomials with periodic Gegenbauer weight
Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 247-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Nikolskii constant (or the Jackson–Nikolskii constant) for complex trigonometric polynomials in the space $L_{\alpha}^{p}(\mathbb{T})$ for $p\ge 1$ with the periodic Gegenbauer weight $| \sin x|^{2\alpha+1}$: $$ \mathcal{C}_{p,\alpha}(n)=\sup_{T\in \mathcal{T}_{n}\setminus \{0\}} \frac{\|T\|_{\infty}}{\|T\|_{p}}, $$ where $\|{ \cdot }\|_{p}=\|{ \cdot }\|_{L_{\alpha}^{p}(\mathbb{T})}$. D. Jackson (1933) proved that $\mathcal{C}_{p,-1/2}(n)\le c_{p}n^{1/p}$ for all $n\ge 1$. The problem of finding $\mathcal{C}_{p,-1/2}(n)$ has a long history. However, sharp constants are known only for $p=2$. For $p=1$, the problem has interesting applications, e.g., in number theory. We note the results of Ja. L. Geronimus, L. V. Taikov, D. V. Gorbachev, I. E. Simonov, P. Yu. Glazyrina. For $p>0$, we note the results of I. I. Ibragimov, V. I. Ivanov, E. Levin, D. S. Lubinsky, M. I. Ganzburg, S. Yu. Tikhonov, in the weight case — V. V. Arestov, A. G. Babenko, M. V. Deikalova, Á. Horváth. It is proved that the supremum here is achieved on a real even trigonometric polynomial with a maximum modulus at zero. As a result, a connection is established with the Nikolskii algebraic constant with weight $(1-x^{2})^{\alpha}$, investigated by V. V. Arestov and M. V. Deikalova (2015). The proof follows their method and is based on the positive generalized translation operator in the space $L^{p}_{\alpha}(\mathbb{T})$ with the periodic Gegenbauer weight. This operator was constructed and studied by D. V. Chertova (2009). As an application, we propose an approach to computing $\mathcal{C}_{p,\alpha}(n)$ based on the Arestov–Deikalova duality relations.
Keywords: trigonometric polynomial, algebraic polynomial, the Nikolskii constant, the Gegenbauer weight.
@article{CHEB_2020_21_1_a15,
     author = {I. A. Martyanov},
     title = {Nikolskii constant for trigonometric polynomials with periodic {Gegenbauer} weight},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {247--258},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a15/}
}
TY  - JOUR
AU  - I. A. Martyanov
TI  - Nikolskii constant for trigonometric polynomials with periodic Gegenbauer weight
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 247
EP  - 258
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a15/
LA  - ru
ID  - CHEB_2020_21_1_a15
ER  - 
%0 Journal Article
%A I. A. Martyanov
%T Nikolskii constant for trigonometric polynomials with periodic Gegenbauer weight
%J Čebyševskij sbornik
%D 2020
%P 247-258
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a15/
%G ru
%F CHEB_2020_21_1_a15
I. A. Martyanov. Nikolskii constant for trigonometric polynomials with periodic Gegenbauer weight. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 247-258. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a15/

[1] Arestov V. V., Kondrat'ev V. P., “Certain extremal problem for nonnegative trigonometric polynomials”, Math. Notes, 47:1 (1990), 10–20 | DOI | MR | MR | Zbl

[2] Geronimus J., “Sur un problème extrémal de Tchebycheff”, Izv. Akad. Nauk SSSR Ser. Mat., 2:4 (1938), 445–456 (in Russian)

[3] Gorbachev D. V., “An integral problem of Konyagin and the $(C,L)$-constants of Nikol'skii”, Proc. Steklov Inst. Math. Suppl., 2 (2005), S117–S138 | MR | Zbl

[4] Gorbachev D. V., Dobrovolskii N. N., “Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}~dx)$ spaces”, Chebyshevskii Sbornik, 19:2 (2018), 67–79 (in Russian) | MR | Zbl

[5] Gorbachev D. V., Ivanov V. I., “A sharp Jackson inequality in $L_{p}(\mathbb{R}^{d})$ with Dunkl weight”, Math. Notes, 105:5 (2019), 657–673 | DOI | MR | Zbl

[6] Gorbachev D. V., Martyanov I. A., “On interrelation of Nikolskii constants for trigonometric polynomials and entire functions of exponential type”, Chebyshevskii Sbornik, 19:2 (2018), 80–89 (in Russian) | MR | Zbl

[7] Ibragimov I. I., “Extremum problems in the class of trigonometric polynomials”, Dokl. Akad. Nauk SSSR, 121:3 (1958), 415–417 (in Russian) | Zbl

[8] Rakhmonov Z. Kh., “Estimate of the density of the zeros of the Riemann zeta function”, Uspekhi Mat. Nauk. Russian Math. Surveys, 49:2 (1994), 168–169 | DOI | MR | Zbl

[9] Taikov L. V., “A group of extremal problems for trigonometric polynomials”, Uspekhi Mat. Nauk, 20:3(123) (1965), 205–211 (in Russian) | MR | Zbl

[10] Taikov L. V., “On the best approximation of Dirichlet kernels”, Math. Notes, 53:6 (1993), 640–643 | DOI | MR | MR | Zbl

[11] Chertova D. V., “Jackson theorems in $L_p$-spaces, $1\leq p2$, with periodic Jacobi weight”, Izv. Tul. Gos. Univ. Estestv. Nauki, 2009, no. 1, 5–27 (in Russian) | MR

[12] Arestov V., Deikalova M., “Nikol'skii inequality between the uniform norm and $L_{q}$-norm with ultraspherical weight of algebraic polynomials on an interval”, Comput. Methods Funct. Theory, 15:4 (2015), 689–708 | DOI | MR | Zbl

[13] Arestov V., Deikalova M., “Nikol'skii inequality between the uniform norm and $L_{q}$-norm with Jacobi weight of algebraic polynomials on an interval”, Analysis Math., 42:2 (2016), 91–120 | DOI | MR | Zbl

[14] Arestov V., Babenko A., Deikalova M., Horváth Á., “Nikol'skii inequality between the uniform norm and integral norm with Bessel weight for entire functions of exponential type on the half-line”, Anal. Math., 44:1 (2018), 21–42 | DOI | MR | Zbl

[15] Carneiro E., Milinovich M. B., Soundararajan K., “Fourier optimization and prime gaps”, Comment. Math. Helv., 94 (2019), 533–568 | DOI | MR | Zbl

[16] Dai F., Gorbachev D., Tikhonov S., “Nikolskii constants for polynomials on the unit sphere”, J. d'Analyse Math., 2019 (to appear) ; 2017, 21 pp., arXiv: 1708.09837 | MR

[17] Dai F., Gorbachev D., Tikhonov S., Estimates of the asymptotic Nikolskii constants for spherical polynomials, 27 pp., arXiv: 1907.03832

[18] Ganzburg M. I., Tikhonov S. Yu., “On sharp constants in Bernstein–Nikolskii inequalities”, Constr. Approx., 45:3 (2017), 449–466 | DOI | MR | Zbl

[19] Gorbachev D. V., Ivanov V. I., Tikhonov S. Yu., “Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx., 49:3 (2019), 555–605 | DOI | MR | Zbl

[20] Jackson D., “Certain problems of closest approximation”, Bull. Am. Math. Soc., 39 (1933), 889–906 | DOI | MR

[21] Levin E., Lubinsky D., “Asymptotic behavior of Nikolskii constants for polynomials on the unit circle”, Comput. Methods Funct. Theory, 15:3 (2015), 459–468 | DOI | MR | Zbl

[22] Simonov I. E., Glazyrina P. Y., “Sharp Markov–Nikolskii inequality with respect to the uniform norm and the integral norm with Chebyshev weight”, J. Approx. Theory, 192 (2015), 69–81 | DOI | MR | Zbl

[23] Shabozov M. Sh., Farozova A. D., “The Jackson–Stechkin inequality with nonclassical modulus of continuity”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 4, 2016, 311–319