The space of Dirichlet series to multivariate lattices and the algebra of Dirichlet series of grids, repetitive multiplication
Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 233-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

Hyperbolic Zeta functions of lattices play an important role in the numerical-theoretic method of approximate analysis. Each such hyperbolic Zeta function of the lattice is a Dirichlet series over the truncated normal spectrum of the lattice. Therefore, the problem of analytic continuation of this class of Dirichlet series arises. As shown by N. M. Dobrovolsky and his co-authors, for any Cartesian lattice, such an analytical continuation over the entire complex plane except for the point $\alpha=1$, in which the pole of order $s$ exists. The question of the existence of an analytic continuation for arbitrary lattices remains open. Therefore, it is natural to consider the set of possible Dirichlet series generated by a given lattice, and to study the properties of this functional space over the field of complex numbers. Algebraic lattices and corresponding algebraic grids entered science in 1976 in the works of K. K. Frolov. Each such lattice is a lattice repeated by multiplication, and its normal spectrum will be a monoid of natural numbers. Therefore, we can consider the algebra of Dirichlet series corresponding to this monoid of natural numbers. This setting is new and has not been seen before in the literature. The fundamental question that is associated with this statement is the following: What analytical properties do Dirichlet series have from the corresponding space and the corresponding algebra?
Keywords: Riemann zeta function, Dirichlet series, zeta function of the monoid of natural numbers, Euler product.
@article{CHEB_2020_21_1_a14,
     author = {N. V. Maksimenko},
     title = {The space of {Dirichlet} series to multivariate lattices and the algebra of {Dirichlet} series of grids, repetitive multiplication},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {233--246},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a14/}
}
TY  - JOUR
AU  - N. V. Maksimenko
TI  - The space of Dirichlet series to multivariate lattices and the algebra of Dirichlet series of grids, repetitive multiplication
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 233
EP  - 246
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a14/
LA  - ru
ID  - CHEB_2020_21_1_a14
ER  - 
%0 Journal Article
%A N. V. Maksimenko
%T The space of Dirichlet series to multivariate lattices and the algebra of Dirichlet series of grids, repetitive multiplication
%J Čebyševskij sbornik
%D 2020
%P 233-246
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a14/
%G ru
%F CHEB_2020_21_1_a14
N. V. Maksimenko. The space of Dirichlet series to multivariate lattices and the algebra of Dirichlet series of grids, repetitive multiplication. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 233-246. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a14/

[1] Babenko K.I., Fundamentals of numerical analysis, Nauka, M., 1986 | MR

[2] Bredikhin B. M., “The remainder term in the asymptotic formula for the function $\nu_G(x)$”, Izvestiya vuzov Matematika, 1960, no. 6, 40–49 | Zbl

[3] Bredikhin B. M., “An elementary solution of inverse problems on bases of free semigroups”, Matematicheskiy sbornik, 50(92):2 (1960), 221–232 | Zbl

[4] Bredikhin B. M., “Free numerical semigroups with power densities”, Doklady Akademii nauk SSSR, 118:5 (1958), 855–857 | Zbl

[5] Bredikhin B. M., “On power densities of some subsets of free semigroups”, Izvestiya vuzov Matematika, 1958, no. 3, 24–30 | Zbl

[6] Bredikhin B. M., “Free numerical semigroups with power densities”, Matematicheskiy sbornik, 46(88):2 (1958), 143–158 | Zbl

[7] Bredikhin B. M., “An example of a finite homomorphism with a bounded adder function”, UMN, 11:4(70) (1956), 119–122 | MR

[8] Bredikhin B. M., “Some questions of the theory of characters of commutative semigroups”, Trudy 3-go Vsesoyuznogo matematicheskogo s'yezda, v. 1, Izdatel'stvo akademii nauk SSSR, M., 1956, 3

[9] Bredikhin B. M., “On adder functions of characters of numerical semigroups”, DAN, 94 (1954), 609–612

[10] Bredikhin B. M., “On the characters of numerical semigroups with a rather rare base”, DAN, 90 (1953), 707–710

[11] Gurvic A., Kurant R., Teorija funkcij, Izd-vo Nauka, M., 1968, 618 pp.

[12] Delone B. N., Faddeev D. K., “Theory of Irrationalities of the Third Degree”, Trudy matematicheskogo instituta imeni Steklova V. A., 11, 1940, 3–340

[13] Dobrovol'skaya L.P., Dobrovol'skii N.M., Simonov A.S., “On the error of approximate integration over modified grids”, Chebyshevskij sbornik, 9:1(25) (2008), 185–223 | MR | Zbl

[14] Dobrovol'skii N. M., Manokhin E.V., “Banach spaces of periodic functions”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, 4:3 (1998), 56–67 | MR

[15] Dobrovol'skii N. M., Manokhin E. V., Rebrova I. Yu., Roshchenya A.L., “On the continuity of the zeta function of a grid with weights”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, 7:1 (2001), 82–86 | MR

[16] N. M. Dobrovol'skii, A. L. Roshchenya, “Number of lattice points in the hyperbolic cross”, Math. Notes, 63:3 (1998), 319–324 | MR

[17] N. N. Dobrovol'skii, “One model Zeta function of the monoid of natural numbers”, Chebyshevskii sbornik, 20:1 (2019), 148–163 | Zbl

[18] N. N. Dobrovol'skii, M. N. Dobrovol'skii, N. M. Dobrovol'skii, I. N. Balaba, I. Yu. Rebrova, “About «zagrobelna the series» for the zeta function of monoids with exponential sequence of simple”, Chebyshevskii sbornik, 19:1 (2018), 106–123 | MR | Zbl

[19] N. N. Dobrovol'skii, M. N. Dobrovol'skii, N. M. Dobrovol'skii, I. N. Balaba, I. Yu. Rebrova, “Dirichlet series algebra of a monoid of natural numbers”, Chebyshevskii sbornik, 20:1 (2019), 180–196 | MR | Zbl

[20] Korobov N. M., Number-theoretic methods in approximate analysis, Fizmatgiz, M., 1963

[21] Korobov N. M., Number-theoretic methods in approximate analysis, 2nd ed., MTSNMO, M., 2004

[22] Lokutsievskij O. V., Gavrikov M. B., The beginning of numerical analysis, TOO “Yanus”, M., 1995 | MR

[23] Chandrasekharan K., Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, M., 1974, 188 pp.

[24] Chudakov N. G., Introduction to the theory of $L$-Dirichlet functions, OGIZ, M.-L., 1947, 204 pp. | MR