Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_1_a13, author = {M. A. Korolev}, title = {Kloosterman sums with primes and the solvability of one congruence with inverse {residues~---~II}}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {221--232}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a13/} }
TY - JOUR AU - M. A. Korolev TI - Kloosterman sums with primes and the solvability of one congruence with inverse residues~---~II JO - Čebyševskij sbornik PY - 2020 SP - 221 EP - 232 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a13/ LA - en ID - CHEB_2020_21_1_a13 ER -
M. A. Korolev. Kloosterman sums with primes and the solvability of one congruence with inverse residues~---~II. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 221-232. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a13/
[1] Korolev M.A., Kloosterman sums with primes to composite moduli, 2019, arXiv: 1911.09981 [math.NT] | MR
[2] Changa M. E., Korolev M.A., Kloosterman sums with primes and the solvability of one congruence with inverse residues-I, 2019, arXiv: 1911.12589 [math.NT] | MR
[3] Karatsuba A.A., “Sums of fractional parts of functions of a special form”, Dokl. Math., 54:1 (1996), 541 | MR | Zbl
[4] Fouvry É., Michel P., “Sur certaines sommes d'exponentielles sur les nombres premiers”, Ann. sci. Éc. norm. supér., 31:1 (1998), 93–130 | DOI | MR | Zbl
[5] Bourgain J., “More on the sum-product phenomenon in prime fields and its applications”, Int. J. Number Theory, 1:1 (2005), 1–32 | DOI | MR | Zbl
[6] Garaev M.Z., “Estimation of Kloosterman sums with primes and its application”, Math. Notes, 88:3 (2010), 330–337 | DOI | MR | Zbl
[7] Fouvry É., Shparlinski I.E., “On a ternary quadratic form over primes”, Acta arith., 150:3 (2011), 285–314 | DOI | MR | Zbl
[8] Baker R.C., “Kloosterman sums with prime variable”, Acta arith., 156:4 (2012), 351–372 | DOI | MR | Zbl
[9] Irving A.J., “Average bounds for Kloosterman sums over primes”, Funct. Approximatio. Comment. Math., 51:2 (2014), 221–235 | DOI | MR | Zbl
[10] Bourgain J., Garaev M. Z., “Sumsets of reciprocals in prime fields and multilinear Kloosterman sums”, Izv. Math., 78:4, 656–707 | DOI | MR | Zbl
[11] Korolev M.A., “Generalized Kloosterman sum with primes”, Proc. Steklov Inst. Math., 296 (2017), 154–171 | DOI | MR | Zbl
[12] Korolev M.A., “New estimate for a Kloosterman sum with primes for a composite modulus”, Sb. Math., 209:5 (2018), 652–659 | DOI | MR | Zbl
[13] Korolev M.A., “Divisors of a quadratic form with primes”, Proc. Steklov Inst. Math., 303 (2018), 154–170 | DOI | MR | Zbl
[14] Korolev M.A., “Elementary Proof of an Estimate for Kloosterman Sums with Primes”, Math. Notes, 103:5 (2018), 761–768 | DOI | MR | Zbl
[15] Korolev M.A., “Short Kloosterman sums with primes”, Math. Notes, 106:1 (2019), 89–97 | DOI | MR | Zbl
[16] Changa M. E., Korolev M.A., “New estimate for Kloosterman sum with primes”, Math. Notes, 2020 (to appear) | MR
[17] Salie H., “Über die Kloostermanschen Summen $S(u, v; q)$”, Math. Z., 34 (1931), 91–109 | DOI | MR