Kloosterman sums with primes and the solvability of one congruence with inverse residues~---~II
Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 221-232.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we continue to study the distribution of inverse residues to given modulus. Earlier, the author obtained a series of non-trivial estimates for incomplete Kloosterman sums over prime numbers with an arbitrary modulus $q$. One of the applications of such estimates are some assertions concerning the distribution of inverse residues $\overline{p}$ to prime numbers lying in a “short” segment: $p\overline{p}\equiv 1\pmod{q}$, $1$, $N\leqslant q^{1-\delta}$, $\delta>0$, and, more general, concerning the distribution of the quantities $g(p) = a\overline{p}+bp$ with respect to modulus $q$, where $a,b$ are some integers, $(ab,q)=1$. Another application is connected with the problem of the representation of a given residue $m\pmod{q}$ by the sum $g(p_{1})+\ldots+g(p_{k})$ for fixed $a,b$ and $k\geqslant 3$, in primes $1$. For the number of such representations, the author have found the formula, where the behavior of the expected main term is controlled by some analogous of the “singular series” that appears in classical circle method, that is, by some function $\kappa$ depending on $q$ and the tuple $k,a,b,m$. For fixed $k,a,b,m$, this function is multiplicative with respect to $q$. In the case when $q$ is not divisible by 2 or 3, this function is strictly positive, and therefore the formula for the number of the representations becomes asymptotic. In this paper, we study the behavior of $\kappa$ for $q = 3^{n}$. It appears that, for any $n\geqslant 1$, $k\geqslant 3$, there exist the “exceptional” triples $a,b,m$ such that $\kappa = 0$. The main purpose is to describe all such triples and to obtain the lower estimate for $\kappa$ for all non-exceptional triples.
Keywords: congruences, solvability, inverse residues, Kloosterman sums, prime numbers, singular series.
@article{CHEB_2020_21_1_a13,
     author = {M. A. Korolev},
     title = {Kloosterman sums with primes and the solvability of one congruence with inverse {residues~---~II}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {221--232},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a13/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - Kloosterman sums with primes and the solvability of one congruence with inverse residues~---~II
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 221
EP  - 232
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a13/
LA  - en
ID  - CHEB_2020_21_1_a13
ER  - 
%0 Journal Article
%A M. A. Korolev
%T Kloosterman sums with primes and the solvability of one congruence with inverse residues~---~II
%J Čebyševskij sbornik
%D 2020
%P 221-232
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a13/
%G en
%F CHEB_2020_21_1_a13
M. A. Korolev. Kloosterman sums with primes and the solvability of one congruence with inverse residues~---~II. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 221-232. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a13/

[1] Korolev M.A., Kloosterman sums with primes to composite moduli, 2019, arXiv: 1911.09981 [math.NT] | MR

[2] Changa M. E., Korolev M.A., Kloosterman sums with primes and the solvability of one congruence with inverse residues-I, 2019, arXiv: 1911.12589 [math.NT] | MR

[3] Karatsuba A.A., “Sums of fractional parts of functions of a special form”, Dokl. Math., 54:1 (1996), 541 | MR | Zbl

[4] Fouvry É., Michel P., “Sur certaines sommes d'exponentielles sur les nombres premiers”, Ann. sci. Éc. norm. supér., 31:1 (1998), 93–130 | DOI | MR | Zbl

[5] Bourgain J., “More on the sum-product phenomenon in prime fields and its applications”, Int. J. Number Theory, 1:1 (2005), 1–32 | DOI | MR | Zbl

[6] Garaev M.Z., “Estimation of Kloosterman sums with primes and its application”, Math. Notes, 88:3 (2010), 330–337 | DOI | MR | Zbl

[7] Fouvry É., Shparlinski I.E., “On a ternary quadratic form over primes”, Acta arith., 150:3 (2011), 285–314 | DOI | MR | Zbl

[8] Baker R.C., “Kloosterman sums with prime variable”, Acta arith., 156:4 (2012), 351–372 | DOI | MR | Zbl

[9] Irving A.J., “Average bounds for Kloosterman sums over primes”, Funct. Approximatio. Comment. Math., 51:2 (2014), 221–235 | DOI | MR | Zbl

[10] Bourgain J., Garaev M. Z., “Sumsets of reciprocals in prime fields and multilinear Kloosterman sums”, Izv. Math., 78:4, 656–707 | DOI | MR | Zbl

[11] Korolev M.A., “Generalized Kloosterman sum with primes”, Proc. Steklov Inst. Math., 296 (2017), 154–171 | DOI | MR | Zbl

[12] Korolev M.A., “New estimate for a Kloosterman sum with primes for a composite modulus”, Sb. Math., 209:5 (2018), 652–659 | DOI | MR | Zbl

[13] Korolev M.A., “Divisors of a quadratic form with primes”, Proc. Steklov Inst. Math., 303 (2018), 154–170 | DOI | MR | Zbl

[14] Korolev M.A., “Elementary Proof of an Estimate for Kloosterman Sums with Primes”, Math. Notes, 103:5 (2018), 761–768 | DOI | MR | Zbl

[15] Korolev M.A., “Short Kloosterman sums with primes”, Math. Notes, 106:1 (2019), 89–97 | DOI | MR | Zbl

[16] Changa M. E., Korolev M.A., “New estimate for Kloosterman sum with primes”, Math. Notes, 2020 (to appear) | MR

[17] Salie H., “Über die Kloostermanschen Summen $S(u, v; q)$”, Math. Z., 34 (1931), 91–109 | DOI | MR