Intervals of small measure containing an algebraic number of given height
Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 213-220

Voir la notice de l'article provenant de la source Math-Net.Ru

Rational numbers are uniformly distributed, even though distances between rational neighbors in a Farey sequence can be quite different. This property doesn't hold for algebraic numbers. In 2013 D. Koleda [6, 7] found the distribution function for real algebraic numbers of an arbitrary degree under their natural ordering. It can be proved that the quantity of real algebraic numbers $ \alpha $ of degree $n$ and height $H( \alpha ) \le Q$ asymptotically equals $c_{1}(n)Q^{n+1}$. Recently it was proved that there exist intervals of length $Q^{- \gamma }, \gamma >1$, free of algebraic numbers $ \alpha , H( \alpha ) \le Q$, however for $0 \le \gamma 1$ there exist at least $c_{2}(n)Q^{n+1- \gamma }$ algebraic numbers in such intervals. In this paper we show that special intervals of length $Q^{- \gamma }$ may contain algebraic numbers even for large values of $ \gamma $, however their quantity doesn't exceed $c_{3}Q^{n+1- \gamma }$. An earlier result by A. Gusakova [16] was proved only for the case $\gamma = \frac{3}{2}$.
Keywords: algebraic number, Diophantine approximation, uniform distribution, Dirichlet's theorem.
@article{CHEB_2020_21_1_a12,
     author = {N. I. Kalosha and I. A. Korlyukova and E. V. Guseva},
     title = {Intervals of small measure containing an algebraic number of given height},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {213--220},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a12/}
}
TY  - JOUR
AU  - N. I. Kalosha
AU  - I. A. Korlyukova
AU  - E. V. Guseva
TI  - Intervals of small measure containing an algebraic number of given height
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 213
EP  - 220
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a12/
LA  - ru
ID  - CHEB_2020_21_1_a12
ER  - 
%0 Journal Article
%A N. I. Kalosha
%A I. A. Korlyukova
%A E. V. Guseva
%T Intervals of small measure containing an algebraic number of given height
%J Čebyševskij sbornik
%D 2020
%P 213-220
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a12/
%G ru
%F CHEB_2020_21_1_a12
N. I. Kalosha; I. A. Korlyukova; E. V. Guseva. Intervals of small measure containing an algebraic number of given height. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 213-220. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a12/