Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_1_a12, author = {N. I. Kalosha and I. A. Korlyukova and E. V. Guseva}, title = {Intervals of small measure containing an algebraic number of given height}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {213--220}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a12/} }
TY - JOUR AU - N. I. Kalosha AU - I. A. Korlyukova AU - E. V. Guseva TI - Intervals of small measure containing an algebraic number of given height JO - Čebyševskij sbornik PY - 2020 SP - 213 EP - 220 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a12/ LA - ru ID - CHEB_2020_21_1_a12 ER -
N. I. Kalosha; I. A. Korlyukova; E. V. Guseva. Intervals of small measure containing an algebraic number of given height. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 213-220. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a12/
[1] Bernik V. I., Tischenko K. I., “Tselochislennye mnogochleny s perepadami vysot koeffitsientov i gipoteza Virzinga”, Dokl. AN Belarusi, 37:5 (1993), 9–11 | MR | Zbl
[2] Bernik V. I., Gettse F., “Raspredelenie deistvitelnykh algebraicheskikh chisel proizvolnoi stepeni v korotkikh intervalakh”, Izv. RAN Ser. matem., 79:1 (2014), 21–42
[3] Bernik V. I., Gettse F., “Raspredelenie deistvitelnykh algebraicheskikh chisel proizvolnoi stepeni v korotkikh intervalakh”, ispravlennyi variant, Izv. RAN. Ser. matem., 79:1 (2015), 21–42 | MR | Zbl
[4] Gelfond A. O., UMN, 4:5 (1949), 14–48 | MR | Zbl
[5] Kassels Dzh. V., Vvedenie v teoriyu diofantovykh priblizhenii, Izd-vo Inostr. Liter., M., 1961, 213 pp.
[6] Koleda D. V., “O raspredelenii deistvitelnykh algebraicheskikh chisel vtoroi stepeni”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2013, no. 3, 54–63
[7] D. V. Koleda, “On the density function of the distribution of real algebraic numbers”, J. Théor. Nombres Bordeaux, 29:1 (2017), 179–200 | DOI | MR | Zbl
[8] Sprindzhuk V. G., Problema Malera v metricheskoi teorii chisel, Nauka i tekhnika, Minsk, 1967, 181 pp. | MR
[9] V. Beresnevich, “Rational Points near Manifolds and Metric Diophantine Approximation”, Annals of Mathematics, Second Series, 175:1 (2012), 187–235 | DOI | MR | Zbl
[10] V. V. Beresnevich, V. I. Bernik, F. Goetze, “Integral polynomials with small discriminants and resultants”, Adv. Math., 298 (2016), 393–412 | DOI | MR | Zbl
[11] Bernik V. I., “Primenenie razmernosti Khausdorfa v teorii diofantovykh priblizhenii”, Acta Arithmetica, 42 (1983), 219–253 | DOI | Zbl
[12] M. M. Dodson, V. I. Bernik, Metric Diophantine approximation on manifolds, Cambridge Tracts in Mathematics, 137, 1999, 172 pp. | MR | Zbl
[13] K. Tishchenko, “On approximation to real numbers by algebraic numbers”, Acta Arithmetica, 94:1 (2000), 1–24 | DOI | MR | Zbl
[14] H. Davenport, W. M. Schmidt, “Dirichlet's theorem on diophantine approximation”, Symposia Mathematica, 4, N.Y.–London, 1970, 113–132 | MR | Zbl
[15] E. Wirsing, “Approximation mit algebraischen Zahlen beschränkten Grades”, Journal für die reine und angewandte Mathematik, 206 (1961), 67–77 | MR | Zbl
[16] Gettse F., Gusakova A. G., “Algebraicheskie chisla v korotkikh intervalakh”, Doklady Natsionalnoi akademii nauk Belarusi, 59:4 (2015), 11–16 | MR
[17] D. Badziahin, J. Schleischitz, An improved bound in Wirsing's problem, arXiv: abs/1912.09013