Intervals of small measure containing an algebraic number of given height
Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 213-220
Voir la notice de l'article provenant de la source Math-Net.Ru
Rational numbers are uniformly distributed, even though distances between rational neighbors in a Farey sequence can be quite different. This property doesn't hold for algebraic numbers. In 2013 D. Koleda [6, 7] found the distribution function for real algebraic numbers of an arbitrary degree under their natural ordering.
It can be proved that the quantity of real algebraic numbers $ \alpha $ of degree $n$ and height $H( \alpha ) \le Q$ asymptotically equals $c_{1}(n)Q^{n+1}$. Recently it was proved that there exist intervals of length $Q^{- \gamma }, \gamma >1$, free of algebraic numbers $ \alpha , H( \alpha ) \le Q$, however for $0 \le \gamma 1$ there exist at least $c_{2}(n)Q^{n+1- \gamma }$ algebraic numbers in such intervals.
In this paper we show that special intervals of length $Q^{- \gamma }$ may contain algebraic numbers even for large values of $ \gamma $, however their quantity doesn't exceed $c_{3}Q^{n+1- \gamma }$. An earlier result by A. Gusakova [16] was proved only for the case $\gamma = \frac{3}{2}$.
Keywords:
algebraic number, Diophantine approximation, uniform distribution, Dirichlet's theorem.
@article{CHEB_2020_21_1_a12,
author = {N. I. Kalosha and I. A. Korlyukova and E. V. Guseva},
title = {Intervals of small measure containing an algebraic number of given height},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {213--220},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a12/}
}
TY - JOUR AU - N. I. Kalosha AU - I. A. Korlyukova AU - E. V. Guseva TI - Intervals of small measure containing an algebraic number of given height JO - Čebyševskij sbornik PY - 2020 SP - 213 EP - 220 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a12/ LA - ru ID - CHEB_2020_21_1_a12 ER -
N. I. Kalosha; I. A. Korlyukova; E. V. Guseva. Intervals of small measure containing an algebraic number of given height. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 213-220. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a12/