Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_1_a10, author = {V. G. Durnev and O. V. Zetkina and A. I. Zetkina}, title = {On elementary theories of algebraically closed groups}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {186--199}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a10/} }
V. G. Durnev; O. V. Zetkina; A. I. Zetkina. On elementary theories of algebraically closed groups. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 186-199. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a10/
[1] Scott W. R., “Algebraically closed groups”, Proc. Amer. Math. Soc., 2 (1951), 118–121 | DOI | MR | Zbl
[2] Neumann B. H., “A note on algebraically closed groups”, J. London. Math. Soc., 27 (1952), 227–242 | MR
[3] Macintyre A., “On algebraically closed groups”, Ann. of Math., 96 (1972), 53–97 | DOI | MR | Zbl
[4] Lyndon R. C., Schupp P. E., Combinatorial group theory, Springer, 2015 | MR
[5] Makanin G. S., “Decidability of the universal and positive theories of a free group”, Math. USSR-Izv., 25:1 (1984), 75–88 | DOI | MR
[6] Borisov V. V., “Simple examples of groups with unsolvable word problem”, Math. Notes, 6:5 (1969), 768–775 | DOI | MR | Zbl
[7] Merzlyakov Yu. I., “Positive formulae over free groups”, Algebra i logika, 5:4 (1966), 25–42 (in Russian) | Zbl
[8] Sacerdote G. S., “Almost all free products of groups have the same positive theory”, J. Algebra, 27:3 (1973), 475–485 | DOI | MR | Zbl