On elementary theories of algebraically closed groups
Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 186-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

In paper for any algebraically closed group $G$, as well as for the class of the algebraically closed groups, we prove algorithmic undecidability of the positive $\forall^2 \exists^{24}$-theory and $\forall^3 \exists^{2}$-theory. For an arbitrary $g\in G$, we also prove the decidability of the equation of the type $$ w(x_1, \ldots , x_n) = g, $$ where $w(x_1, \ldots , x_n)$ is a non-empty irreducible word in the unknowns $x_1,\ldots x_n\in G$.
Keywords: algebraically closed group, positive theory, equation.
@article{CHEB_2020_21_1_a10,
     author = {V. G. Durnev and O. V. Zetkina and A. I. Zetkina},
     title = {On elementary theories of algebraically closed groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {186--199},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a10/}
}
TY  - JOUR
AU  - V. G. Durnev
AU  - O. V. Zetkina
AU  - A. I. Zetkina
TI  - On elementary theories of algebraically closed groups
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 186
EP  - 199
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a10/
LA  - ru
ID  - CHEB_2020_21_1_a10
ER  - 
%0 Journal Article
%A V. G. Durnev
%A O. V. Zetkina
%A A. I. Zetkina
%T On elementary theories of algebraically closed groups
%J Čebyševskij sbornik
%D 2020
%P 186-199
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a10/
%G ru
%F CHEB_2020_21_1_a10
V. G. Durnev; O. V. Zetkina; A. I. Zetkina. On elementary theories of algebraically closed groups. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 186-199. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a10/

[1] Scott W. R., “Algebraically closed groups”, Proc. Amer. Math. Soc., 2 (1951), 118–121 | DOI | MR | Zbl

[2] Neumann B. H., “A note on algebraically closed groups”, J. London. Math. Soc., 27 (1952), 227–242 | MR

[3] Macintyre A., “On algebraically closed groups”, Ann. of Math., 96 (1972), 53–97 | DOI | MR | Zbl

[4] Lyndon R. C., Schupp P. E., Combinatorial group theory, Springer, 2015 | MR

[5] Makanin G. S., “Decidability of the universal and positive theories of a free group”, Math. USSR-Izv., 25:1 (1984), 75–88 | DOI | MR

[6] Borisov V. V., “Simple examples of groups with unsolvable word problem”, Math. Notes, 6:5 (1969), 768–775 | DOI | MR | Zbl

[7] Merzlyakov Yu. I., “Positive formulae over free groups”, Algebra i logika, 5:4 (1966), 25–42 (in Russian) | Zbl

[8] Sacerdote G. S., “Almost all free products of groups have the same positive theory”, J. Algebra, 27:3 (1973), 475–485 | DOI | MR | Zbl