Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_4_a9, author = {A. A. Zhukova and A. V. Shutov}, title = {Rauzy substitution and local structure of torus tilings}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {137--157}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a9/} }
A. A. Zhukova; A. V. Shutov. Rauzy substitution and local structure of torus tilings. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 137-157. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a9/
[1] Arnoux P., Ito S., “Pisot substitutions and Rauzy fractals”, Bull. Belg. Math. Soc. Simon Stevin, 8:2 (2001), 181–207 | DOI | MR | Zbl
[2] Biringer I., Schmidt B., “The three-gap theorem and Riemann geometry”, Geometriae Dedicata, 136:1 (2008), 175–190 | DOI | MR | Zbl
[3] Bleher P., Homma Y., Ji L., Roeder R., Shen J., “Nearest neighbor distances on a circle: multidimensional case”, J. Stat. Phys., 146 (2012), 446–465 | DOI | MR | Zbl
[4] Chevallier N., “Geometrie des suites de Kronecker”, Manuscripta Math., 94 (1997), 231–241 | DOI | MR | Zbl
[5] Chevallier N., “Cyclic groups and the three distance theorem”, Canad. J. Math., 59 (2007), 503–552 | DOI | MR | Zbl
[6] Chung F. R. K., Graham R. L., “On the set of distances determined by union of arithmetic progression”, Ars. Combinatoria, 1:1 (1976), 57–76 | MR | Zbl
[7] Floreik K., “Une remarque sur la repartition des nombres $m\xi\bmod 1$”, Coll. Math. Wroclaw, v. 2, 1951, 323–324
[8] Fried E., Sos V. T., “A generalization of the three-distance theorem for groups”, Algebra Universalis, 29:1 (1992), 136–149 | DOI | MR | Zbl
[9] Geelen A. S., Simpson R. J., “A two dimensional Steinhaus theorem”, Australas. J. Combin., 8 (1993), 136–197 | MR
[10] Haynes A., Koivusalo H., Walton J., Sadun L., “Gaps problems and frequencies of patches in cut and project sets”, Math. Proc. Camb. Philos. Soc., 161 (2016), 65–85 | DOI | MR | Zbl
[11] Marklof J., “Strömbergsson The Three Gap Theorem and the Space of Lattices”, American Mathematical Monthly, 124:8 (2017), 741–745 | DOI | MR | Zbl
[12] Pytheas Fogg N., Substitutions in dynamics, arithmetics and combinatorics, Springer, 2001 | DOI | MR
[13] Liang F. M., “A short proof of the 3d distance theorem”, Discrete Math., 28:3 (1979), 325–326 | DOI | MR | Zbl
[14] Rauzy G., “Nombres algébriques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 | DOI | MR | Zbl
[15] Ravenstein T. V. The three gap theorem (Steinhaus conjecture), J. Austral. Math. Soc. Ser. A, 45 (1988), 360–370 | DOI | MR | Zbl
[16] Slater N., “Gaps and steps for the sequence $n\theta \mod 1$”, Proc. Camb. Phil. Soc., 63 (1967), 1115–1123 | DOI | MR | Zbl
[17] Sós V. T., “On the distribution mod 1 of the sequence $n\alpha$”, Ann. Univ. Sci. Budapest Eötvös Sect. Math., 1 (1958), 127–134 | Zbl
[18] Suranyi J., “Uber die Anordnung der Vielfachen einer reellen Zahl mod 1”, Ann. Univ. Sci. Budapest Eotvos Sect. Math., 1 (1958), 107–111 | Zbl
[19] Świerczkowski S., “On successive settings of an arc on the circumference of a circle”, Fund. Math., 46 (1958), 187–189 | DOI | MR
[20] Vâjâitu M., Zaharescu A., “Distinct Gaps between Fractional Parts of Sequences”, Proceedings of the American Mathematical Society, 130:12 (2002), 3447–3452 | DOI | MR
[21] Vijay S., “Eleven Euclidean distances are enough”, J. Number Theory, 128 (2008), 1655–1661 | DOI | MR | Zbl
[22] Zhuravlev V. G., “Dividing Toric Tilings and Bounded Remainder Sets”, Analiticheskaya teoriya chisel i teoriya funkcij. 30, Zapiski nauchnyh seminarov POMI, 440, 2015, 99–122
[23] Zhuravlev V. G., “One-dimensional Fibonacci tilings”, Izv. RAN. Ser. matem., 71:2 (2007), 89–122 | MR | Zbl
[24] Zhuravlev V. G., “Exchanged toric developments and bounded remainder sets”, Analiticheskaya teoriya chisel i teoriya funkcij. 26, Zapiski nauchnyh seminarov POMI, 392, 2011, 95–145
[25] Kuznetsova D. V., Shutov A. V., “Exchanged toric tilings, Rauzy substitution, and bounded remainder sets”, Matematicheskiye zametki, 98:6 (2015), 878–897 | Zbl
[26] Krasilshchikov V. V., Shutov A., One-dimensional quasi-periodic tilings and their applications, VF RUK, Vladimir, 2011