Rauzy substitution and local structure of torus tilings
Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 137-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any irrational $\alpha$ we can consider tilings of the segment $[0;1]$ by the points $\{i\alpha\}$ with $0\leq i$. These tilings have some interesting properties, including well-known three lengths and three gaps theorems. In particular, these tilings contain segments of either two, or three different lengths. In the case of two lengths, the corresponding tilings are known as generalized Fibonacci tilings. They are closely connected with the combinatorics of words, one-dimensional quasiperiodic tilings, bounded remainder sets, first return maps for irrational circle rotations, etc. Transferring the general three lengths and three gaps theorems to two-dimensional case, i.e. to the points $(\{i\alpha_1\},\{i\alpha_2\})$ is a well-known open problem. In the present work we consider a special case of this problem. associated with two-dimensional generalizations of Fibonacci tilings. These tilings are obtained using iterations of the geometric version of the famous Rauzy substitution. They arise in the words combinatorics in the study of generalizations of Sturmian sequences, as well as in number theory in the study of toric shifts. Considered tilings consist of rhombuses of three different types. It is proved that there are exactly 9 types of sets of rhombuses adjacent to a given rhombus. Also we obtain a method that allows explicitly determine all neighbours of the given rhombus. The results can be considered as a first step to a multidimensional generalization of the three lengths and three gaps theorems.
Keywords: three length theorem, three gaps theorem, Rauzy substitution, generalized exchanged toric tilings, bounded remainder sets.
@article{CHEB_2019_20_4_a9,
     author = {A. A. Zhukova and A. V. Shutov},
     title = {Rauzy substitution and local structure of torus tilings},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {137--157},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a9/}
}
TY  - JOUR
AU  - A. A. Zhukova
AU  - A. V. Shutov
TI  - Rauzy substitution and local structure of torus tilings
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 137
EP  - 157
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a9/
LA  - ru
ID  - CHEB_2019_20_4_a9
ER  - 
%0 Journal Article
%A A. A. Zhukova
%A A. V. Shutov
%T Rauzy substitution and local structure of torus tilings
%J Čebyševskij sbornik
%D 2019
%P 137-157
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a9/
%G ru
%F CHEB_2019_20_4_a9
A. A. Zhukova; A. V. Shutov. Rauzy substitution and local structure of torus tilings. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 137-157. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a9/

[1] Arnoux P., Ito S., “Pisot substitutions and Rauzy fractals”, Bull. Belg. Math. Soc. Simon Stevin, 8:2 (2001), 181–207 | DOI | MR | Zbl

[2] Biringer I., Schmidt B., “The three-gap theorem and Riemann geometry”, Geometriae Dedicata, 136:1 (2008), 175–190 | DOI | MR | Zbl

[3] Bleher P., Homma Y., Ji L., Roeder R., Shen J., “Nearest neighbor distances on a circle: multidimensional case”, J. Stat. Phys., 146 (2012), 446–465 | DOI | MR | Zbl

[4] Chevallier N., “Geometrie des suites de Kronecker”, Manuscripta Math., 94 (1997), 231–241 | DOI | MR | Zbl

[5] Chevallier N., “Cyclic groups and the three distance theorem”, Canad. J. Math., 59 (2007), 503–552 | DOI | MR | Zbl

[6] Chung F. R. K., Graham R. L., “On the set of distances determined by union of arithmetic progression”, Ars. Combinatoria, 1:1 (1976), 57–76 | MR | Zbl

[7] Floreik K., “Une remarque sur la repartition des nombres $m\xi\bmod 1$”, Coll. Math. Wroclaw, v. 2, 1951, 323–324

[8] Fried E., Sos V. T., “A generalization of the three-distance theorem for groups”, Algebra Universalis, 29:1 (1992), 136–149 | DOI | MR | Zbl

[9] Geelen A. S., Simpson R. J., “A two dimensional Steinhaus theorem”, Australas. J. Combin., 8 (1993), 136–197 | MR

[10] Haynes A., Koivusalo H., Walton J., Sadun L., “Gaps problems and frequencies of patches in cut and project sets”, Math. Proc. Camb. Philos. Soc., 161 (2016), 65–85 | DOI | MR | Zbl

[11] Marklof J., “Strömbergsson The Three Gap Theorem and the Space of Lattices”, American Mathematical Monthly, 124:8 (2017), 741–745 | DOI | MR | Zbl

[12] Pytheas Fogg N., Substitutions in dynamics, arithmetics and combinatorics, Springer, 2001 | DOI | MR

[13] Liang F. M., “A short proof of the 3d distance theorem”, Discrete Math., 28:3 (1979), 325–326 | DOI | MR | Zbl

[14] Rauzy G., “Nombres algébriques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 | DOI | MR | Zbl

[15] Ravenstein T. V. The three gap theorem (Steinhaus conjecture), J. Austral. Math. Soc. Ser. A, 45 (1988), 360–370 | DOI | MR | Zbl

[16] Slater N., “Gaps and steps for the sequence $n\theta \mod 1$”, Proc. Camb. Phil. Soc., 63 (1967), 1115–1123 | DOI | MR | Zbl

[17] Sós V. T., “On the distribution mod 1 of the sequence $n\alpha$”, Ann. Univ. Sci. Budapest Eötvös Sect. Math., 1 (1958), 127–134 | Zbl

[18] Suranyi J., “Uber die Anordnung der Vielfachen einer reellen Zahl mod 1”, Ann. Univ. Sci. Budapest Eotvos Sect. Math., 1 (1958), 107–111 | Zbl

[19] Świerczkowski S., “On successive settings of an arc on the circumference of a circle”, Fund. Math., 46 (1958), 187–189 | DOI | MR

[20] Vâjâitu M., Zaharescu A., “Distinct Gaps between Fractional Parts of Sequences”, Proceedings of the American Mathematical Society, 130:12 (2002), 3447–3452 | DOI | MR

[21] Vijay S., “Eleven Euclidean distances are enough”, J. Number Theory, 128 (2008), 1655–1661 | DOI | MR | Zbl

[22] Zhuravlev V. G., “Dividing Toric Tilings and Bounded Remainder Sets”, Analiticheskaya teoriya chisel i teoriya funkcij. 30, Zapiski nauchnyh seminarov POMI, 440, 2015, 99–122

[23] Zhuravlev V. G., “One-dimensional Fibonacci tilings”, Izv. RAN. Ser. matem., 71:2 (2007), 89–122 | MR | Zbl

[24] Zhuravlev V. G., “Exchanged toric developments and bounded remainder sets”, Analiticheskaya teoriya chisel i teoriya funkcij. 26, Zapiski nauchnyh seminarov POMI, 392, 2011, 95–145

[25] Kuznetsova D. V., Shutov A. V., “Exchanged toric tilings, Rauzy substitution, and bounded remainder sets”, Matematicheskiye zametki, 98:6 (2015), 878–897 | Zbl

[26] Krasilshchikov V. V., Shutov A., One-dimensional quasi-periodic tilings and their applications, VF RUK, Vladimir, 2011