Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_4_a6, author = {M. G. Gadoev and S. A. Iskhokov and F. S. Iskhokov}, title = {On separation of a class of degenerate differential operators in the {Lebesgue} space}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {86--107}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a6/} }
TY - JOUR AU - M. G. Gadoev AU - S. A. Iskhokov AU - F. S. Iskhokov TI - On separation of a class of degenerate differential operators in the Lebesgue space JO - Čebyševskij sbornik PY - 2019 SP - 86 EP - 107 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a6/ LA - ru ID - CHEB_2019_20_4_a6 ER -
%0 Journal Article %A M. G. Gadoev %A S. A. Iskhokov %A F. S. Iskhokov %T On separation of a class of degenerate differential operators in the Lebesgue space %J Čebyševskij sbornik %D 2019 %P 86-107 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a6/ %G ru %F CHEB_2019_20_4_a6
M. G. Gadoev; S. A. Iskhokov; F. S. Iskhokov. On separation of a class of degenerate differential operators in the Lebesgue space. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 86-107. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a6/
[1] Everitt W. N., Giertz M., “Some properties of the domains of certain differential operators”, Proc. Lond. Math. Soc., 23:3 (1971), 301–324 | DOI | MR | Zbl
[2] Chernyavskaya N. A., Shuster L. A., Correct Solvability, Embedding Theorems and Separability for the Sturm-Liouville Equation, Jul 23. 2013, arXiv: 1307.5611 | MR | Zbl
[3] Chernyavskaya N. A., Shuster L. A., “Weighted Estimates for Solutions of the General Sturm-Liouville Equation and the Everitt-Giertz Problem. I”, Proceedings of the Edinburgh Mathematical Society (Series 2), 58 (2015), 125–147 | DOI | MR | Zbl
[4] Brown R. C., Hinton D. B., “Two separation criteria for second order ordinary or partial differential operators”, Mathem. Bohemica, 124:2–3 (1999), 273–292 | DOI | MR | Zbl
[5] Brown R. C., “Separation and disconjugacy”, Journ. of Inequ. in Pure and Appl. Math., 4:3 (2003), 56, 1–16 | MR
[6] Ospanov K. N., Akhmetkaliyeva R. D., “Separation and the existence theorem for second order nonlinear differential equation”, Electr. J. of Quantat. Theory of Diff. Equat., 2012, no. 66, 1–12 http://www.math.u-szeged.hu/ejqtde/ | MR
[7] Boimatov K. Kh., “Theorems on the separation property”, Dokl. Akad. Nauk SSSR, 213:5 (1973), 1009–1011
[8] Boimatov K. Kh, “On the Everitt and Giertz method for Banach spaces”, Dokl. Akad. Nauk, 356:1 (1997), 10–12 | MR | Zbl
[9] Boimatov K. Kh., “Coercive estimates and separability for second-order nonlinear differential operators”, Mat. Zametki, 46:6 (1989), 110–112 | MR
[10] Zayed E. M. E., Omran S. A., “Separation of the Tricomi differential operator in Hilbert space with application to the existance and uniqueness theorem”, Int. J. Contemp. Math. Sciences, 6:8 (2011), 353–364 | MR | Zbl
[11] Omran S. A., Gepreel K., Nofal E. T. A., “Separation of the general differential wave equation in Hilbert space”, Int. J. Nonlinear Science, 11:3 (2011), 358–365 http://www.nonlinearscience.org.uk/ | MR | Zbl
[12] Muratbekov M., Otelbaev M., “On the existence of a resolvent and separability for a class of singular hyperbolic type differential operators on an unbounded domain”, Eurasian mathematical journal, 7:1 (2016), 50–67 | MR | Zbl
[13] Zayed E. M. E., “Separation for the biharmonic differential operator in the Hilbert space associated with the existance and uniqueness theorem”, J. Math. Anal. Appl., 337 (2008), 659–666 | DOI | MR | Zbl
[14] Zayed E. M.E., Omran S. A., “Separation for triple-harmonic differential operator in Hilbert space”, Int. J. Math. Combin., 4 (2010), 13–23 | Zbl
[15] Boimatov K. Kh., “$L_2$-estimates of the generalized solutions of elliptic differential equations”, Dokl. Akad. Nauk SSSR, 223:3 (1975), 521–524 | MR
[16] Boimatov K. Kh., “Separability theorems, weighted spaces and their applications”, Proc. Steklov Inst. Math., 170 (1987), 39–81 | MR
[17] Boimatov K. Kh., “Coercivity properties of strongly degenerate elliptic equations”, Russian Acad. Sci. Dokl. Math., 47:3 (1993), 489–497 | MR
[18] Otelbaev M., “Coercive estimates and separability theorems for elliptic equations in $R^n$”, Proc. Steklov Inst. Math., 161 (1984), 213–239 | MR | Zbl | Zbl
[19] Lizorkin P.I., “Estimate of mixed and intermediate derivatives in weighted $L_p$-norms”, Proc. Steklov Inst. Math., 156 (1980), 141–153 | MR | Zbl
[20] Iskhokov S. A., “Smoothness of the generalized solution of an elliptic equation with nonpower degeneracy”, Differential equations, 39:11 (2003), 1618–1625 | DOI | MR | Zbl
[21] Kolmogorov A. N., Fomin S. V., Elements of the Theory of Functions and Functional Analysis, Dover Publications, INC., 1999, 576 pp. | MR | MR