On separation of a class of degenerate differential operators in the Lebesgue space
Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 86-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega$ be an arbitrary open set in $n$-dimensional Euclidian space $R_{n}$ and let $\Pi(0)$ be the unit cube centered at the origin. For each point $\xi=(\xi_{1},\xi_{2},\ldots,\xi_{n})\in R_{n}$ and each vector $\vec{t}=(t_{1},t_{2},\ldots,t_{n})$ with positive components we define a parallelepiped $\Pi_{\overrightarrow{t}}(\xi)$ by the identity $$ \Pi_{\overrightarrow{t}}(\xi)=\left\{x\in R_{n} :\left(\left(x_{1}-\xi_{1}\right)/t_{1}, \left(x_{2}-\xi_{2}\right)/t_{2},\ldots, \left(x_{n}-\xi_{n}\right)/t_{n}\right)\in \Pi(0)\right\}. $$ Let $g_{j}(x) (j=\overline{1,n})$ be positive functions defined in $\Omega$. We let $\Pi_{\varepsilon,\overrightarrow{g}}(\xi)=\Pi_{\varepsilon\overrightarrow{g}(\xi)}(\xi)$, where $\varepsilon>0$ and $\overrightarrow{g}(\xi)=(g_{1}(\xi),g_{2}(\xi),\ldots,g_{n}(\xi))$. It is assumed that the set $\Omega$ and functions $g_{j}(x), j=\overline{1,n},$ are related by condition: (A) There exists a number $\varepsilon_{0}>0$ such that for each $\xi\in\Omega$ and any $\varepsilon\in (0, \varepsilon_{0})$ the parallelepiped $\Pi_{\varepsilon,\overrightarrow{g}}(\xi)$ is contained in $\Omega$. The condition (A) is an analogue of the immersion condition introduced by P.I. Lizorkin in 1980. In the paper we investigate separation of a differential expression \begin{equation}\label{*} L(x,D_{x})=\sum_{|k|\leq 2r}a_{k}(x)D_{x}^{k} (x\in \Omega), \end{equation} where $r$ – a natural number, $k=(k_{1}, k_{2}, \ldots , k_{n})$ is a multi-index, $|k|=k_{1}+k_{2}+\ldots+k_{n}$ is length of the multi-index, in the Lebesgue space $L_{p}(\Omega), 1$. We denote by $\mathcal{K}$ the set of all multi-indexes $k$ such that $a_k(x)\not\equiv 0$. Let $O_\mathcal{K}$ be the set of all functions $u(x)\in L_{1, loc}(\Omega)$, that have Sobolev generalized derivatives $D_x^ku(x)$ for all $k\in\mathcal{K}$. The differential expression (*) is said to be $L_p$-separated if for all $u(x)\in O_\mathcal{K}$ such that $u(x)\in L_{p}(\Omega)$, $L(x, D_x)u(x)\in L_{p}(\Omega)$ the inclusion $a_k(x)D^k_x u(x)\in L_{p}(\Omega)$ holds for all multi-indexes $k\in \mathcal{K}$. The work consists of five sections. The first section contains the statement of the main results, the right regularizer for the studied class of differential expressions is constructed in the second section, and sections 3-5 provide proofs of the main theorems of the paper.
Keywords: separation, partial differential operator, non-power degeneration, right-hand regularizing operator, inverse operator.
@article{CHEB_2019_20_4_a6,
     author = {M. G. Gadoev and S. A. Iskhokov and F. S. Iskhokov},
     title = {On separation of a class of degenerate differential operators in the {Lebesgue} space},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {86--107},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a6/}
}
TY  - JOUR
AU  - M. G. Gadoev
AU  - S. A. Iskhokov
AU  - F. S. Iskhokov
TI  - On separation of a class of degenerate differential operators in the Lebesgue space
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 86
EP  - 107
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a6/
LA  - ru
ID  - CHEB_2019_20_4_a6
ER  - 
%0 Journal Article
%A M. G. Gadoev
%A S. A. Iskhokov
%A F. S. Iskhokov
%T On separation of a class of degenerate differential operators in the Lebesgue space
%J Čebyševskij sbornik
%D 2019
%P 86-107
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a6/
%G ru
%F CHEB_2019_20_4_a6
M. G. Gadoev; S. A. Iskhokov; F. S. Iskhokov. On separation of a class of degenerate differential operators in the Lebesgue space. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 86-107. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a6/

[1] Everitt W. N., Giertz M., “Some properties of the domains of certain differential operators”, Proc. Lond. Math. Soc., 23:3 (1971), 301–324 | DOI | MR | Zbl

[2] Chernyavskaya N. A., Shuster L. A., Correct Solvability, Embedding Theorems and Separability for the Sturm-Liouville Equation, Jul 23. 2013, arXiv: 1307.5611 | MR | Zbl

[3] Chernyavskaya N. A., Shuster L. A., “Weighted Estimates for Solutions of the General Sturm-Liouville Equation and the Everitt-Giertz Problem. I”, Proceedings of the Edinburgh Mathematical Society (Series 2), 58 (2015), 125–147 | DOI | MR | Zbl

[4] Brown R. C., Hinton D. B., “Two separation criteria for second order ordinary or partial differential operators”, Mathem. Bohemica, 124:2–3 (1999), 273–292 | DOI | MR | Zbl

[5] Brown R. C., “Separation and disconjugacy”, Journ. of Inequ. in Pure and Appl. Math., 4:3 (2003), 56, 1–16 | MR

[6] Ospanov K. N., Akhmetkaliyeva R. D., “Separation and the existence theorem for second order nonlinear differential equation”, Electr. J. of Quantat. Theory of Diff. Equat., 2012, no. 66, 1–12 http://www.math.u-szeged.hu/ejqtde/ | MR

[7] Boimatov K. Kh., “Theorems on the separation property”, Dokl. Akad. Nauk SSSR, 213:5 (1973), 1009–1011

[8] Boimatov K. Kh, “On the Everitt and Giertz method for Banach spaces”, Dokl. Akad. Nauk, 356:1 (1997), 10–12 | MR | Zbl

[9] Boimatov K. Kh., “Coercive estimates and separability for second-order nonlinear differential operators”, Mat. Zametki, 46:6 (1989), 110–112 | MR

[10] Zayed E. M. E., Omran S. A., “Separation of the Tricomi differential operator in Hilbert space with application to the existance and uniqueness theorem”, Int. J. Contemp. Math. Sciences, 6:8 (2011), 353–364 | MR | Zbl

[11] Omran S. A., Gepreel K., Nofal E. T. A., “Separation of the general differential wave equation in Hilbert space”, Int. J. Nonlinear Science, 11:3 (2011), 358–365 http://www.nonlinearscience.org.uk/ | MR | Zbl

[12] Muratbekov M., Otelbaev M., “On the existence of a resolvent and separability for a class of singular hyperbolic type differential operators on an unbounded domain”, Eurasian mathematical journal, 7:1 (2016), 50–67 | MR | Zbl

[13] Zayed E. M. E., “Separation for the biharmonic differential operator in the Hilbert space associated with the existance and uniqueness theorem”, J. Math. Anal. Appl., 337 (2008), 659–666 | DOI | MR | Zbl

[14] Zayed E. M.E., Omran S. A., “Separation for triple-harmonic differential operator in Hilbert space”, Int. J. Math. Combin., 4 (2010), 13–23 | Zbl

[15] Boimatov K. Kh., “$L_2$-estimates of the generalized solutions of elliptic differential equations”, Dokl. Akad. Nauk SSSR, 223:3 (1975), 521–524 | MR

[16] Boimatov K. Kh., “Separability theorems, weighted spaces and their applications”, Proc. Steklov Inst. Math., 170 (1987), 39–81 | MR

[17] Boimatov K. Kh., “Coercivity properties of strongly degenerate elliptic equations”, Russian Acad. Sci. Dokl. Math., 47:3 (1993), 489–497 | MR

[18] Otelbaev M., “Coercive estimates and separability theorems for elliptic equations in $R^n$”, Proc. Steklov Inst. Math., 161 (1984), 213–239 | MR | Zbl | Zbl

[19] Lizorkin P.I., “Estimate of mixed and intermediate derivatives in weighted $L_p$-norms”, Proc. Steklov Inst. Math., 156 (1980), 141–153 | MR | Zbl

[20] Iskhokov S. A., “Smoothness of the generalized solution of an elliptic equation with nonpower degeneracy”, Differential equations, 39:11 (2003), 1618–1625 | DOI | MR | Zbl

[21] Kolmogorov A. N., Fomin S. V., Elements of the Theory of Functions and Functional Analysis, Dover Publications, INC., 1999, 576 pp. | MR | MR