Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_4_a5, author = {A. Ya. Belov and A. L. Chernyatiev}, title = {On uniformly recurrent words generated by shifting segments, including with a change in orientation}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {69--85}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a5/} }
TY - JOUR AU - A. Ya. Belov AU - A. L. Chernyatiev TI - On uniformly recurrent words generated by shifting segments, including with a change in orientation JO - Čebyševskij sbornik PY - 2019 SP - 69 EP - 85 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a5/ LA - ru ID - CHEB_2019_20_4_a5 ER -
%0 Journal Article %A A. Ya. Belov %A A. L. Chernyatiev %T On uniformly recurrent words generated by shifting segments, including with a change in orientation %J Čebyševskij sbornik %D 2019 %P 69-85 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a5/ %G ru %F CHEB_2019_20_4_a5
A. Ya. Belov; A. L. Chernyatiev. On uniformly recurrent words generated by shifting segments, including with a change in orientation. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 69-85. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a5/
[1] A.Ya. Belov, V.V. Borisenko, V.N. Latyshev, “Monomialnye algebry”, Itogi nauki i tekhniki. Sovr. Mat. Pril. Tem. Obzory, 26, M., 2002, 35–214
[2] A.Ya. Belov, G. Kondakov, “Obratnye zadachi simvolicheskoi dinamiki”, Fundamentalnaya i prikladnaya matematika, 1 (1995) | MR
[3] A.Ya. Belov, A.L. Chernyatev, “Opisanie slov Shturma nad n-bukvennym alfavitom”, Mat. metod. i pril. IV, MGSU, 1999, 122–128
[4] Ya.G. Sinai, Vvedenie v ergodicheskuyu teoriyu, FAZIS, M., 1996, 144 pp. | MR
[5] A.L. Chernyatev, “Sbalansirovannye slova i dinamicheskie sistemy”, Fund. i Prikl. Mat. (to appear)
[6] A.L. Chernyatev, “Slova s minimalnoi funktsiei rosta”, Vestnik MGU, 2007 (to appear)
[7] A. Aberkane, “Words whose complexity satisfies $\lim p(n)/n = 1$”, Theor. Comp. Sci., 307 (2003), 31–46 | DOI | MR | Zbl
[8] P. Arnoux, G. Rauzy, “Representation geometrique des suites the complexite $2n + 1$”, Bull. Soc. Math. France, 119 (1991), 199–215 | DOI | MR | Zbl
[9] V. Berthé, S. Ferenczi, Luca Q. Zamboni, Interactions between Dynamics, Arithmetics and Combinatorics: the Good, the Bad, and the Ugly, 2007 | MR
[10] J. Berstel, P. Séébold, “Sturmian words”, Algebraic Combinatorics on Words, Chap. 2, Encyclopedia of Mathematics and Its Applications, 90, ed. M. Lothaire, Cambridge University Press, Cambridge, 2002 | MR
[11] J. Berstel, “Resent results on Sturmian words”, Developments in language theory II, World Scientific, 1996, 13–24 | MR | Zbl
[12] X. Droubay, J. Justin, G. Pirillo, “Episturmian words and some construction of de Luca and Rauzy”, Theoret. Comp. Sci., 2000 (to appear) | MR
[13] H. Furstenberg, “Poincaré reccurence and number theory”, Bull. Amer. Math. Soc., 5 (1981), 211–234 | DOI | MR | Zbl
[14] S. Ferenczi, Luca Q. Zamboni, Combinatorial structure of symmetric k-interval exchange transformations, in preparation
[15] S. Ferenczi, C. Holton, Luca Q. Zamboni, “Structure of three-interval exchange transformations II: a combinatorial description of the trajectories”, J. Analyse Math., 89 (2003), 239–276 | DOI | MR | Zbl
[16] R. L. Graham, “Covering the Positive Integers by disjoints sets of the form $\{[n\alpha + \beta]:$ $n=1, 2, \ldots\}$”, J. Combin. Theory Ser. A, 15 (1973), 354–358 | DOI | MR | Zbl
[17] P. Hubert, “Well balanced sequences”, Theoret. Comput. Sci., 242 (2000), 91–108 | DOI | MR | Zbl
[18] A. de Luca, “Sturmian words: structure, combinatorics and their arithmetics”, Theoret. Comp. Sci., 183 (1997), 45–82 | DOI | MR | Zbl
[19] M. Lothaire, Combinatorics on Words, Encyclopedia of Mathematics and its Applications, 17, Addison-Wesley, Reading, MA, 1983 | MR | Zbl
[20] M. Morse, G. A. Hedlund, “Symbolic dynamics II. Sturmian trajectories”, Amer. J. Math., 62 (1940), 1–42 | DOI | MR
[21] G. Rauzy, “Mots infnis en arithmetique”, Automata on Infnite Words, Ecole de Printemps d'Informatique Thfeorique (Le Mont Dore, May 1984), Lecture Notes in Computer Science, 192, eds. M. Nivat, D. Perrin, Springer-Verlag, Berlin etc., 1985, 165–171 | MR
[22] G. Rote, “Sequences with subword complexity $2n$”, J. Number Theory, 46 (1994), 196–213 | DOI | MR | Zbl
[23] L. Vuillon, “Balanced words”, Bull. Belg. Math. Soc. Simon Stevin, 10:5 (2003), 787–805 | DOI | MR