Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_4_a4, author = {M. G. Bashmakova and V. Kh. Salikhov}, title = {On irrationality measure $\mathop{\mathrm{arctg}}\frac{1}{2}$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {58--68}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a4/} }
M. G. Bashmakova; V. Kh. Salikhov. On irrationality measure $\mathop{\mathrm{arctg}}\frac{1}{2}$. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 58-68. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a4/
[1] Huttner M., “Irrationalité de certaines intégrales hypergéométriques”, J. Number Theory, 26 (1987), 166–178 | DOI | MR | Zbl
[2] Heimonen A., Matala-aho T., Väänänen K., “On irrationality measures of the values of Gauss hypergeometric function”, Manuscripta Math., 81 (1993), 183–202 | DOI | MR | Zbl
[3] Heimonen A., Matala-aho T., V\"{aä}nänen K., “An application of Jacobi type polynomials to irrationality measures”, Bull. Austral. Math. Soc., 50:2 (1994), 225–243 | DOI | MR | Zbl
[4] Salikhov V. Kh., “On the irrationality measures of $\ln3$”, Doklady Mathematics, 417:6 (2007), 753–755 | Zbl
[5] Salnikova E. S., “Diophantine approximations of $\log 2$ and other logarithms”, Mathematical Notes, 83:3 (2008), 428–438 | MR | Zbl
[6] Bashmakova M. G., “Approximation of values of the Gauss hypergeometric function by rational fractions”, Mathematical Notes, 88:6 (2010), 785–797 | Zbl
[7] Salikhov V. Kh., “On the irrationality measures of $\pi$”, Russian Mathematical Surveys, 63:3 (2008), 163–164 | MR | Zbl
[8] Tomashevskaya E. B., “On the irrationality measure of the number $\log 5+\frac{\pi}{2}$ and some other numbers”, Chebyshevskii sbornik, 8:2 (2007), 97–108 | MR | Zbl
[9] Tomashevskaya E. B., Diophantine approximations of a values of some analytic functions, Dissertation, Bryansk State technical University, 2009, 99 pp.
[10] Wu Q., Wang L., “On the irrationality measure of $\log 3$”, Journal of number theory, 2014, no. 142, 264–273 | MR
[11] Marcovecchio R., “The Rhin-Viola method for $\ln 2$”, Acta Aritm., 139 (2009), 147–184 | DOI | MR | Zbl
[12] Androsenko V. A., Salikhov V. Kh., “Symmetrized version of the Markovecchio integral in the theory of Diophantine approximations”, Mathematical Notes, 97:4 (2015), 483–492 | MR | Zbl
[13] Androsenko V. A., “Irrationality measure of the number $\frac{\pi}{\sqrt{3}}$”, Izvestiya: Mathematics, 79:1 (2015), 3–20 | MR | Zbl
[14] Hata M., “Irrationality measures of the values of hypergeometric functions”, Acta Arith., LX (1992), 335–347 | DOI | MR | Zbl
[15] Wu Q., “On the linear independence measure of logarithms of rational numbers”, Math. Of computation, 72:242 (2002), 901–911 | DOI | MR