Mathematical modeling of structural elements destruction under dynamic load
Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 408-422.

Voir la notice de l'article provenant de la source Math-Net.Ru

The development of modern industry puts forward a responsible and complex task of protecting the population, service personnel and the environment from accidents. The analysis of possible deviations from normal operating conditions in these industries and a thorough study of the possible development of various emergency situations that lead to dynamic effects on structures and finding conditions for the destruction of structural elements is of paramount importance. The article proposes a mathematical method for finding the conditions of destruction of structural elements by dynamic loading. To solve dynamic problems, a variational approach is used, based on the construction of a functional for calculating the power of elastic deformation taking into account the power of inertia forces, in the context of using modern software systems based on the finite element method. As an example, the problem of computer modeling of the dynamic load located above the center of the reinforced concrete slab, which allows to determine the stress-strain state of the simplest elements of building structures of plates, is considered. All calculations were performed in ANSYSLS-DYNA environment. The results are obtained in the form of graphs of strain rates and stress fields. The obtained results are compared with the analytical solution of a similar problem presented in the work of G.T. Volodin.
Keywords: dynamic loading, functional capacity of elastic deformation, power of the forces of inertia, finite element method, stress-strain state, reinforced concrete.
@article{CHEB_2019_20_4_a26,
     author = {G. M. Zhuravlev and V. G. Telichko and N. S. Kurien and A. E. Gvozdev and D. V. Maliy},
     title = {Mathematical modeling of structural elements destruction under dynamic load},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {408--422},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a26/}
}
TY  - JOUR
AU  - G. M. Zhuravlev
AU  - V. G. Telichko
AU  - N. S. Kurien
AU  - A. E. Gvozdev
AU  - D. V. Maliy
TI  - Mathematical modeling of structural elements destruction under dynamic load
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 408
EP  - 422
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a26/
LA  - ru
ID  - CHEB_2019_20_4_a26
ER  - 
%0 Journal Article
%A G. M. Zhuravlev
%A V. G. Telichko
%A N. S. Kurien
%A A. E. Gvozdev
%A D. V. Maliy
%T Mathematical modeling of structural elements destruction under dynamic load
%J Čebyševskij sbornik
%D 2019
%P 408-422
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a26/
%G ru
%F CHEB_2019_20_4_a26
G. M. Zhuravlev; V. G. Telichko; N. S. Kurien; A. E. Gvozdev; D. V. Maliy. Mathematical modeling of structural elements destruction under dynamic load. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 408-422. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a26/

[1] Kochetkov K. E., Kotlyarevsky V. A., Zabegaev A. V., Accidents and catastrophes. Prevention and elimination of consequences, Izd-vo ACV, M., 1995, 320 pp.

[2] Bazhenov Yu. M., Concrete under dynamic loading, Izd-vo Strojizdat, M., 1970, 271 pp.

[3] Orlenko L. P., Physics of explosion, v. 1, FIZMATLIT, M., 2002, 832 pp.

[4] Salamakhin T. M., The physical basis of the mechanical actions of explosion and methods of calculation of explosive loads, Izd-vo VIA, M., 1974, 255 pp.

[5] Cook M. A., The science of industrial explosives, Izd-vo Nedra, M., 1980, 455 pp.

[6] Volodin G. T., Novikov A. C., “Geometric nonlinearity in problems of destruction of shell structures by explosion”, Izvestiya TulGU. Tekhnicheskie nauki, 2014, no. 3, 94–103

[7] Volodin G. T., Novikov A. C., “Energy method in problems of structural elements destruction by explosive load”, Izvestiya TulGU. Tekhnicheskie nauki, 2017, no. 6, 243–255

[8] Volodin G. T., Novikov A. C., “On the problem of guaranteed destruction of shell structures by explosion of non-contact charges of condensed”, Vestnik TulGU. Ser. Differencialnye uravneniya i prikladnye zadachi, 1 (2013), 40–47

[9] Zhuravlev G. M., Gvozdev A. E., Kalinin A. N., Kuzovleva O. V., Ageev E. V., Kuryan N. S., “Plate Destruction by explosive load”, Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta, 7:3 (24) (2017), 24–42

[10] Makarov E. S., Cheglov A. E., Gvozdev A. E., Zhuravlev G. M., Sergeev N. N., Kazakov M. V., Breki A. D., “Power required in the plastic deformation of metallic powder materials”, Steel in Translation, 48:9 (2018), 597–602 | DOI

[11] Kurien N. S., “Properties and destruction of materials under impact load”, EXPERIENCE of the PAST — a LOOK into the FUTURE, 6th international scientific and practical conference of young scientists and students (Tula, 2016), 387–392

[12] Zhuravlev G. M., Kurin N. S., “Statement of the problem of mathematical modeling of explosion resistance and guaranteed destruction of plates by explosive load”, Fundamental'nye i prikladnye problemy tekhniki i tekhnologii, 2017, no. 2, 56–63

[13] Zhuravlev G. M., Kurin N. S., “Mathematical modeling of explosive impact in ANSYS/AUTODYN”, Proceedings of the XX International conference “Actual problems of construction, construction industry and architecture”, Izd-vo TulGU, Tula, 2019, 191

[14] Zhuravlev G. M., Kurin N. S., “Mathematical modeling of the explosive effect of a non-contact charge on an isotropic concrete slab”, Proceedings of the XX International conference “Actual problems of construction, construction industry and architecture”, Izd-vo TulGU, Tula, 2019, 194

[15] Balandin P. P., “On the hypothesis of strength”, Bulletin of engineers and technicians, 1937, no. 1, 12–36

[16] Novatsky V., Theory of elasticity, Izd-vo Mir, M., 1975, 872 pp.

[17] Nowacki V., Dynamic problems of thermoelasticity, Izd-vo Mir, M., 1970, 436 pp.

[18] Bathe K. Y., Finite element Methods, Izd-vo FIZMATLIT, M., 2010, 1024 pp.

[19] Bathe K.Y., Numerical methods of analysis and finite element method, Izd-vo Strojizdat, M., 1982, 448 pp.

[20] Zenkevich O., Finite element Method in engineering, Izd-vo Mir, M., 1975, 543 pp.

[21] Gallagher R.,, Finite element Method. Basics, Izd-vo Mir, M., 1984, 428 pp. | MR

[22] Segerlind L., Application of the finite element method, Izd-vo Mir, M., 1979, 392 pp.

[23] Moxnes J. F. et al., “Experimental and numerical study of the fragmentation of expanding warhead casings by using different numerical codes and solution technics”, Defence Technology, 10 (2014), 161–176 | DOI

[24] Tham C. Y., “Reinforced concrete perforation and penetration simulation using Autodyn 3D”, Finite Elements in Analysis and Design, 41 (2005), 1401–1410 | DOI

[25] Riedel W., Betonun terdynamis chenlasten, Meso- und makrome chanisc hemodelle und ihre parameter, Ph. D thesis, EMI-Bericht, 2000, 220 pp.

[26] Riedel W., Thoma K., Hiermaier S., Schmolinske E., “Penetration of reinforced concrete by BETA-B-500. Numerical analysis using a new macroscopic concrete model for hydrocodes”, Proceeding of 9th international symposium on interaction of the effects of munitions with structures, Berlin, 1999, 315–322