Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_4_a24, author = {M. Sh. Shabozov}, title = {Some problems of approximation of periodic functions by trigonometric polynomials in $L_2$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {385--398}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a24/} }
TY - JOUR AU - M. Sh. Shabozov TI - Some problems of approximation of periodic functions by trigonometric polynomials in $L_2$ JO - Čebyševskij sbornik PY - 2019 SP - 385 EP - 398 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a24/ LA - ru ID - CHEB_2019_20_4_a24 ER -
M. Sh. Shabozov. Some problems of approximation of periodic functions by trigonometric polynomials in $L_2$. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 385-398. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a24/
[1] Ditzian Z., Totik V., Moduli of smoothness, Springer Ser. Comput. Math., 9, Springer-Verlag, N.Y., 1987, 227 pp. | DOI | MR | Zbl
[2] Runovskiy K. V., “On approximation by families of linear polynomial operators in $L_{p}, (0
1)$ spaces”, Russian Academy of Sciences. Sbornik Mathematics, 82:2 (1995)[3] Vasilev S. N., “Sharp Jackson-Stechkin inequality in $L_2$ with the modulus of continuity generated by an arbitrary finite-difference operator with constant coefficients”, Dokl. Math., 66:1 (2002), 5–8 | MR | Zbl
[4] Kozko A. I., Rozhdestvenskiy A. V., “On Jackson's inequality with a generalized modulus of continuity”, Mat. Zametki, 73:5 (2003), 783–788 | MR | Zbl
[5] Ivanov A. V., Ivanov V. I., “Optimal arguments in Jackson's inequality in the power-weighted space $L_2(\mathbb R^d)$”, Math. Notes, 94:3–4 (2013), 320–329 | DOI | MR | Zbl
[6] Potapov M. K., “On the properties and application in approximation theory of a family of generalized shift operators”, Math. Notes, 69:3–4 (2001), 373–386 | DOI | MR | Zbl
[7] Pustovoytov N. P., “An estimate for the best approximations of periodic functions by trigonometric polynomials in terms of averaged differences, and the multidimensional Jackson theorem”, Sb. Math., 188:10 (1997), 1507–1520 | DOI | MR
[8] Abilov V. A., Abilova F. V., “Some problems of the approximation of $2\pi$-periodic functions by Fourier sums in the space $L_2(2\pi)$”, Math. Notes, 76:5–6 (2004), 749–757 | DOI | MR | Zbl
[9] Vakarchuk S. B., Zabutnaya V. I., “Jackson-Stechkin type inequalities for special moduli of continuity and widths of function classes in the space $L_{2}$”, Math. Notes, 92:3–4 (2012), 458–472 | DOI | MR | Zbl
[10] Shabozov M. Sh., Tukhliev K., “Best polynomial approximations and the widths of function classes in $L_2$”, Math. Notes, 94:5–6 (2013), 930–937 | DOI | MR | Zbl
[11] Shabozov M. Sh., Yusupov G. A., “Exact constants in Jackson-type inequalities and exact values of the widths of some classes of functions in $L_2$”, Sib. Math. J., 52:6 (2011), 1124–1136 | DOI | MR | Zbl
[12] Tukhliev K., “Best approximations and widths of some convolution classes in $L_2$”, Tr. Inst. Mat. Mekh., 22, no. 4, 2016, 284–294 | MR
[13] Korneichuk N. P., Extremal problems in theory of approximation, M., 1976 | MR
[14] Vakarchuk S. B., Zabutnaya V. I., “Inequalities between best polynomial approximations and some smoothness characteristics in the space $L_2$ and widths of classes of functions”, Math. Notes, 99:1–2 (2016), 222–242 | DOI | MR | Zbl
[15] Storojenko E. A., Krotov V. G., Osvald P., “Direct and inverse theorems of Jackson type in the spaces $L^p, 0
1$”, Mat. Sb. (N.S.), 98(140):3(11) (1975), 395–415 | MR | Zbl[16] Chernih N. I., “The best approximation of periodic functions by trigonometric polynomials in $L\sb{2}$”, Mat. Zametki, 2 (1967), 513–522 | MR | Zbl
[17] Taykov L. V., “Inequalities containing best approximations, and the modulus of continuity of functions in $L\sb{2}$”, Mat. Zametki, 20:3 (1976), 433–438 | MR | Zbl
[18] Taykov L. V., “Best approximations of differentiable functions in the metric of the space $L\sb{2}$”, Mat. Zametki, 22:4 (1977), 535–542 | MR | Zbl
[19] Taykov L. V., “Structural and constructive characteristics of functions from $L\sb{2}$”, Mat. Zametki, 25:2 (1979), 217–223 | MR | Zbl
[20] Ligun A. A., “Some inequalities between best approximations and moduli of continuity in the space $L\sb{2}$”, Mat. Zametki, 24:6 (1978), 785–792 | MR | Zbl
[21] Айнуллоев Н., “О поперечниках дифференцируемых функций в $L_2$”, Докл. АН ТаджССР, 28:6 (1985), 309–313 | MR
[22] Shalaev V. V., “Widths in $L_2$ of classes of differentiable functions, defined by higher-order moduli of continuity”, Ukrainian Math. J., 43:1 (1991), 104–107 | DOI | MR | Zbl
[23] Yussef Kh., “On best approximation of functions and values of widths of classes of functions in $L_2$”, Application of functional analyses in theory of approximation, Proceeding of Kalinskiy state university, 1988, 100–114 | MR
[24] Vakarchuk S. B., “On the best polynomial approximations in $L_2$ of some classes of $2\pi$-periodic functions and of the exact values of their $n$-widths”, Math. Notes, 70:3–4 (2001), 300–310 | DOI | MR | Zbl
[25] Shabozov M. Sh., Yusupov G. A., “Best polynomial approximations in $L_2$ of some classes of $2\pi$-periodic functions and the exact values of their widths”, Math. Notes, 90:5–6 (2011), 748–757 | DOI | MR | Zbl
[26] Shabozov M. Sh., Vakarchuk S. B., Zabutnaya V. I., “Sharp inequalities of Jackson-Stechkin type for periodic functions in $L_2$ and values of widths of classes of functions”, Dokl. RAN, 451:6 (2013), 625–628 | Zbl
[27] Shabozov M. Sh., Shabozova A. A., “Some sharp inequalities of Jackson-Stechkin type for periodic differentiable functions in Weyl sense in $L_2$”, Tr. Inst. Mat. Mekh., 25, no. 4, 2019, 255–264
[28] Weyl H., “Bemerkungen zum Begriff der differential quotienten gebrochener Ordnung”, Vierteljahresschr. Natursch. Ges. Zurich, 62 (1917), 296–302 | MR | Zbl
[29] Shabozov M. Sh., Yusupov G. A., Temurbekova S. D., “$N$-widths of certaing function classes defind by the modulus of continuity”, J. of Approximation Theory, 2015 (2017), 145–162 | DOI | MR