Some problems of approximation of periodic functions by trigonometric polynomials in $L_2$
Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 385-398.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is consists from two parts. In first part summarizes the review of findings on best approximation of periodic functions by trigonometric polynomials in Hilbert space $L_{2}:=L_{2}[0,2\pi]$. The sharp inequalities between the best approximation and averaged with given weights modulus of continuity of $m$th order values $r$th derivatives of functions and analogues for some modified modulus of continuity presented. In second part, some new sharp Jackson-Stechkin type inequalities for characteristics of smoothness studied by K. V. Runovski and more detail by S. B. Vakarchuk and V. I. Zabutnaya are proposed. The sharp result on joint approximation of function and successive derivatives for some classes of functions defined by modulus of smoothness obtained.
Keywords: approximation of function, the trigonometric polynomial, moduli of continuity, the averaged moduli of continuity, Jackson-Stechkin type inequality, join approximation of function and derivatives.
@article{CHEB_2019_20_4_a24,
     author = {M. Sh. Shabozov},
     title = {Some problems of approximation of periodic functions by trigonometric polynomials in $L_2$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {385--398},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a24/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
TI  - Some problems of approximation of periodic functions by trigonometric polynomials in $L_2$
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 385
EP  - 398
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a24/
LA  - ru
ID  - CHEB_2019_20_4_a24
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%T Some problems of approximation of periodic functions by trigonometric polynomials in $L_2$
%J Čebyševskij sbornik
%D 2019
%P 385-398
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a24/
%G ru
%F CHEB_2019_20_4_a24
M. Sh. Shabozov. Some problems of approximation of periodic functions by trigonometric polynomials in $L_2$. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 385-398. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a24/

[1] Ditzian Z., Totik V., Moduli of smoothness, Springer Ser. Comput. Math., 9, Springer-Verlag, N.Y., 1987, 227 pp. | DOI | MR | Zbl

[2] Runovskiy K. V., “On approximation by families of linear polynomial operators in $L_{p}, (0

1)$ spaces”, Russian Academy of Sciences. Sbornik Mathematics, 82:2 (1995)

[3] Vasilev S. N., “Sharp Jackson-Stechkin inequality in $L_2$ with the modulus of continuity generated by an arbitrary finite-difference operator with constant coefficients”, Dokl. Math., 66:1 (2002), 5–8 | MR | Zbl

[4] Kozko A. I., Rozhdestvenskiy A. V., “On Jackson's inequality with a generalized modulus of continuity”, Mat. Zametki, 73:5 (2003), 783–788 | MR | Zbl

[5] Ivanov A. V., Ivanov V. I., “Optimal arguments in Jackson's inequality in the power-weighted space $L_2(\mathbb R^d)$”, Math. Notes, 94:3–4 (2013), 320–329 | DOI | MR | Zbl

[6] Potapov M. K., “On the properties and application in approximation theory of a family of generalized shift operators”, Math. Notes, 69:3–4 (2001), 373–386 | DOI | MR | Zbl

[7] Pustovoytov N. P., “An estimate for the best approximations of periodic functions by trigonometric polynomials in terms of averaged differences, and the multidimensional Jackson theorem”, Sb. Math., 188:10 (1997), 1507–1520 | DOI | MR

[8] Abilov V. A., Abilova F. V., “Some problems of the approximation of $2\pi$-periodic functions by Fourier sums in the space $L_2(2\pi)$”, Math. Notes, 76:5–6 (2004), 749–757 | DOI | MR | Zbl

[9] Vakarchuk S. B., Zabutnaya V. I., “Jackson-Stechkin type inequalities for special moduli of continuity and widths of function classes in the space $L_{2}$”, Math. Notes, 92:3–4 (2012), 458–472 | DOI | MR | Zbl

[10] Shabozov M. Sh., Tukhliev K., “Best polynomial approximations and the widths of function classes in $L_2$”, Math. Notes, 94:5–6 (2013), 930–937 | DOI | MR | Zbl

[11] Shabozov M. Sh., Yusupov G. A., “Exact constants in Jackson-type inequalities and exact values of the widths of some classes of functions in $L_2$”, Sib. Math. J., 52:6 (2011), 1124–1136 | DOI | MR | Zbl

[12] Tukhliev K., “Best approximations and widths of some convolution classes in $L_2$”, Tr. Inst. Mat. Mekh., 22, no. 4, 2016, 284–294 | MR

[13] Korneichuk N. P., Extremal problems in theory of approximation, M., 1976 | MR

[14] Vakarchuk S. B., Zabutnaya V. I., “Inequalities between best polynomial approximations and some smoothness characteristics in the space $L_2$ and widths of classes of functions”, Math. Notes, 99:1–2 (2016), 222–242 | DOI | MR | Zbl

[15] Storojenko E. A., Krotov V. G., Osvald P., “Direct and inverse theorems of Jackson type in the spaces $L^p, 0

1$”, Mat. Sb. (N.S.), 98(140):3(11) (1975), 395–415 | MR | Zbl

[16] Chernih N. I., “The best approximation of periodic functions by trigonometric polynomials in $L\sb{2}$”, Mat. Zametki, 2 (1967), 513–522 | MR | Zbl

[17] Taykov L. V., “Inequalities containing best approximations, and the modulus of continuity of functions in $L\sb{2}$”, Mat. Zametki, 20:3 (1976), 433–438 | MR | Zbl

[18] Taykov L. V., “Best approximations of differentiable functions in the metric of the space $L\sb{2}$”, Mat. Zametki, 22:4 (1977), 535–542 | MR | Zbl

[19] Taykov L. V., “Structural and constructive characteristics of functions from $L\sb{2}$”, Mat. Zametki, 25:2 (1979), 217–223 | MR | Zbl

[20] Ligun A. A., “Some inequalities between best approximations and moduli of continuity in the space $L\sb{2}$”, Mat. Zametki, 24:6 (1978), 785–792 | MR | Zbl

[21] Айнуллоев Н., “О поперечниках дифференцируемых функций в $L_2$”, Докл. АН ТаджССР, 28:6 (1985), 309–313 | MR

[22] Shalaev V. V., “Widths in $L_2$ of classes of differentiable functions, defined by higher-order moduli of continuity”, Ukrainian Math. J., 43:1 (1991), 104–107 | DOI | MR | Zbl

[23] Yussef Kh., “On best approximation of functions and values of widths of classes of functions in $L_2$”, Application of functional analyses in theory of approximation, Proceeding of Kalinskiy state university, 1988, 100–114 | MR

[24] Vakarchuk S. B., “On the best polynomial approximations in $L_2$ of some classes of $2\pi$-periodic functions and of the exact values of their $n$-widths”, Math. Notes, 70:3–4 (2001), 300–310 | DOI | MR | Zbl

[25] Shabozov M. Sh., Yusupov G. A., “Best polynomial approximations in $L_2$ of some classes of $2\pi$-periodic functions and the exact values of their widths”, Math. Notes, 90:5–6 (2011), 748–757 | DOI | MR | Zbl

[26] Shabozov M. Sh., Vakarchuk S. B., Zabutnaya V. I., “Sharp inequalities of Jackson-Stechkin type for periodic functions in $L_2$ and values of widths of classes of functions”, Dokl. RAN, 451:6 (2013), 625–628 | Zbl

[27] Shabozov M. Sh., Shabozova A. A., “Some sharp inequalities of Jackson-Stechkin type for periodic differentiable functions in Weyl sense in $L_2$”, Tr. Inst. Mat. Mekh., 25, no. 4, 2019, 255–264

[28] Weyl H., “Bemerkungen zum Begriff der differential quotienten gebrochener Ordnung”, Vierteljahresschr. Natursch. Ges. Zurich, 62 (1917), 296–302 | MR | Zbl

[29] Shabozov M. Sh., Yusupov G. A., Temurbekova S. D., “$N$-widths of certaing function classes defind by the modulus of continuity”, J. of Approximation Theory, 2015 (2017), 145–162 | DOI | MR