On the functions of Hardy zeros and its derivatives lying on the critical line
Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 371-384.

Voir la notice de l'article provenant de la source Math-Net.Ru

Hardy function $Z(t)$ takes real values for real values of $t$ and real zeros of $Z(t)$ are the zeros of $\zeta(s)$, that are on the critical line. The first result of the zeros of the Riemann zeta function on the critical line is the G.Hardy theorem. In 1914 he proved that $\zeta(1/2+it)$ has infinitely many real zeros. Then Hardy and Littlewood in 1921 proved that the interval $(T, T+H)$ when $H\ge T^{1/4+\varepsilon}$ contains odd order zero of function $\zeta(1/2+it)$. Jan Moser in 1976 proved that this assertion holds for $H\ge T^{1/6}\ln^2T$. In 1981 A.A.Karatsuba proved Hardy-Litllvud theorem already for $H\ge T^{5/32}\ln^2T$. In 2006 Z.Kh.Rahmonov, Sh.A.Khayrulloev have reduced a problem of the magnitude of the interval $(T, T+H)$ of the critical line, which contains an odd order zero of the zeta function to the problem of finding an exponential pairs for estimating the special trigonometric sums. In 2009 Z.H.Rahmonov, Sh.A.Khayrulloev find the lower bound of $\theta_1(k, l)$ on $\mathcal{P}$ – the set of all exponential pairs $(k, l)$ of different from $(1/2, 1/2)$ and having the form: $$ \mathop {\inf }\limits_{(k,l) \in \mathcal{P} } \theta _1 (k;l) = R + 1, $$ where $R = 0.8290213568591335924092397772831120\ldots $ – Rankin constant. In 1981 A.A.Karatsuba has studied the problem of neighboring zeros of the function $Z(t)$ together with the problem of the neighboring extremum points or of inflection points of the function $Z(t)$ or in a more general substitution – of the neighboring zeros of functions $Z^{(j)}(t)$, $j\ge 1$. The main result of our work is to reduce the problem of the magnitude of the interval $(T, T+H)$ of the critical line, which is known to be a odd order zero of the function $Z^{(j)}(t)$, ($j\ge 1$) to the problem of finding the exponential pairs for estimating the special trigonometric sum and to improve the A.A.Karatsuby theorem for $j=1$.
Keywords: Hardy function, exponential pair, critical line, the Riemann zeta function.
@article{CHEB_2019_20_4_a23,
     author = {Sh. A. Khayrulloev},
     title = {On the functions of {Hardy} zeros and its derivatives lying on the critical line},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {371--384},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a23/}
}
TY  - JOUR
AU  - Sh. A. Khayrulloev
TI  - On the functions of Hardy zeros and its derivatives lying on the critical line
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 371
EP  - 384
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a23/
LA  - ru
ID  - CHEB_2019_20_4_a23
ER  - 
%0 Journal Article
%A Sh. A. Khayrulloev
%T On the functions of Hardy zeros and its derivatives lying on the critical line
%J Čebyševskij sbornik
%D 2019
%P 371-384
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a23/
%G ru
%F CHEB_2019_20_4_a23
Sh. A. Khayrulloev. On the functions of Hardy zeros and its derivatives lying on the critical line. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 371-384. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a23/

[1] Hardy G.H., “Sur les zeros de la fonction $\zeta(s)$ de Riemann”, Compt. Rend. Acad. Sci., 158 (1914), 1012–1014 | Zbl

[2] Hardy G.H., Littlewood J.E., “The zeros of Riemann's zeta–function on the critical line”, Math. Z., 10 (1921), 283–317 | DOI | MR | Zbl

[3] Moser J., “On a certain sum in the theory of the Riemann zeta-function”, Acta Arith., 1976, 31–43 (Russian) | DOI | MR | Zbl

[4] Karatsuba A. A., “On the distance between consecutive zeros of the Riemann zeta function that lie on the critical line”, Proc. Steklov Inst. Math., 157 (1983), 51–66 | MR | Zbl | Zbl

[5] Karatsuba A. A., “Zeros of the function $\zeta (s)$ on short intervals of the critical line”, Izv. Akad. Nauk SSSR, Ser. Mat., 48:3 (1984), 523–537 | MR | Zbl

[6] Karatsuba A. A., “Distribution of zeros of the function $\zeta(\frac12+it)$”, Izv. Akad. Nauk SSSR. Ser. Mat., 48:6 (1984), 1214–1224 | MR | Zbl

[7] Karatsuba A. A., “A density theorem and the behavior of the argument of the Riemann zeta function”, Mat. Zametki, 60:3 (1996), 448–449 | MR | Zbl

[8] Karatsuba A. A., “Zeros of the Riemann zeta function”, Dokl. Akad. Nauk SSSR, 276:3 (1984), 535–539 (Russian) | MR | Zbl

[9] Rakhmonov Z. Kh., Khayrulloev Sh. A., “Distance between the next zeros of Riemann's zeta-function in the critical line”, Doklady Akademii nauk Respubliki Tajikistan, 49:5 (2006), 393–400

[10] Rakhmonov Z. Kh., Khayrulloev Sh. A., “The neibour zero of the Riemann's zeta-function laying on a critical line”, Doklady Akademii nauk Respubliki Tajikistan, 52:5 (2009), 331–337

[11] Graham S.W., Kolesnik G., Vander Corput's Method of Exponential sums, Cambridge university press, Cambridge–New York–Port Chester–Melbourne–Sydney, 1991 | MR

[12] Rakhmonov Z. Kh., “Estimate of the density of the zeros of the Riemann zeta function”, Russian Mathematical Surveys, 49:2 (1994), 161–162 | DOI | MR | Zbl

[13] Rakhmonov Z. Kh., “The zeros of the Riemann zeta function on short intervals of the critical line”, Chebyshevskiy Sbornik, 7:1 (2006), 263–279 | MR

[14] Voronin S.M., Karatsuba A.A., The Riemann zeta function, 1994, 376 pp. | MR

[15] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Izdat. “Nauka”, M., 1975, 183 pp. (Russian) | MR