Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_4_a23, author = {Sh. A. Khayrulloev}, title = {On the functions of {Hardy} zeros and its derivatives lying on the critical line}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {371--384}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a23/} }
Sh. A. Khayrulloev. On the functions of Hardy zeros and its derivatives lying on the critical line. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 371-384. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a23/
[1] Hardy G.H., “Sur les zeros de la fonction $\zeta(s)$ de Riemann”, Compt. Rend. Acad. Sci., 158 (1914), 1012–1014 | Zbl
[2] Hardy G.H., Littlewood J.E., “The zeros of Riemann's zeta–function on the critical line”, Math. Z., 10 (1921), 283–317 | DOI | MR | Zbl
[3] Moser J., “On a certain sum in the theory of the Riemann zeta-function”, Acta Arith., 1976, 31–43 (Russian) | DOI | MR | Zbl
[4] Karatsuba A. A., “On the distance between consecutive zeros of the Riemann zeta function that lie on the critical line”, Proc. Steklov Inst. Math., 157 (1983), 51–66 | MR | Zbl | Zbl
[5] Karatsuba A. A., “Zeros of the function $\zeta (s)$ on short intervals of the critical line”, Izv. Akad. Nauk SSSR, Ser. Mat., 48:3 (1984), 523–537 | MR | Zbl
[6] Karatsuba A. A., “Distribution of zeros of the function $\zeta(\frac12+it)$”, Izv. Akad. Nauk SSSR. Ser. Mat., 48:6 (1984), 1214–1224 | MR | Zbl
[7] Karatsuba A. A., “A density theorem and the behavior of the argument of the Riemann zeta function”, Mat. Zametki, 60:3 (1996), 448–449 | MR | Zbl
[8] Karatsuba A. A., “Zeros of the Riemann zeta function”, Dokl. Akad. Nauk SSSR, 276:3 (1984), 535–539 (Russian) | MR | Zbl
[9] Rakhmonov Z. Kh., Khayrulloev Sh. A., “Distance between the next zeros of Riemann's zeta-function in the critical line”, Doklady Akademii nauk Respubliki Tajikistan, 49:5 (2006), 393–400
[10] Rakhmonov Z. Kh., Khayrulloev Sh. A., “The neibour zero of the Riemann's zeta-function laying on a critical line”, Doklady Akademii nauk Respubliki Tajikistan, 52:5 (2009), 331–337
[11] Graham S.W., Kolesnik G., Vander Corput's Method of Exponential sums, Cambridge university press, Cambridge–New York–Port Chester–Melbourne–Sydney, 1991 | MR
[12] Rakhmonov Z. Kh., “Estimate of the density of the zeros of the Riemann zeta function”, Russian Mathematical Surveys, 49:2 (1994), 161–162 | DOI | MR | Zbl
[13] Rakhmonov Z. Kh., “The zeros of the Riemann zeta function on short intervals of the critical line”, Chebyshevskiy Sbornik, 7:1 (2006), 263–279 | MR
[14] Voronin S.M., Karatsuba A.A., The Riemann zeta function, 1994, 376 pp. | MR
[15] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Izdat. “Nauka”, M., 1975, 183 pp. (Russian) | MR