Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_4_a22, author = {G. V. Fedorov}, title = {On boundedness of period lengths of continued fractions of key elements hyperelliptic fields over the field of rational numbers}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {357--370}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a22/} }
TY - JOUR AU - G. V. Fedorov TI - On boundedness of period lengths of continued fractions of key elements hyperelliptic fields over the field of rational numbers JO - Čebyševskij sbornik PY - 2019 SP - 357 EP - 370 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a22/ LA - ru ID - CHEB_2019_20_4_a22 ER -
%0 Journal Article %A G. V. Fedorov %T On boundedness of period lengths of continued fractions of key elements hyperelliptic fields over the field of rational numbers %J Čebyševskij sbornik %D 2019 %P 357-370 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a22/ %G ru %F CHEB_2019_20_4_a22
G. V. Fedorov. On boundedness of period lengths of continued fractions of key elements hyperelliptic fields over the field of rational numbers. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 357-370. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a22/
[1] Abel N. H., “Uber die Integration der Differential-Formel $\rho \text{d}x / \sqrt{R}$, wenn $R$ und $\rho$ ganze Functionen sind”, J. Reine Angew. Math., 1826, no. 1, 185–221 | MR | Zbl
[2] Chebychev P. L., “Sur l'integration de la differential $\frac{x+A}{\sqrt{x^4 + \alpha x^3 + \beta x^2 + \gamma}}\text{d}x$”, J. Math. Pures Appl., 2:9 (1864), 225–246
[3] Adams W. W., Razar M. J., “Multiples of points on elliptic curves and continued fractions”, Proc. London Math. Soc., 41:3 (1980), 481–498 | DOI | MR | Zbl
[4] Platonov V. P., “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russian Math. Surveys, 69:1 (2014), 1–34 | DOI | MR | Zbl
[5] Schinzel A., “On some problems of the arithmetical theory of continued fractions”, Acta Arith., 6 (1960/1961), 393–413 | DOI | MR
[6] Schinzel A., “On some problems of the arithmetical theory of continued fractions. II”, Acta Arith., 7 (1961/1962), 287–298 | DOI | MR
[7] Mazur B., “Rational isogenies of prime degree”, Ivent. Math., 44:2 (1978), 129–162 | DOI | MR | Zbl
[8] Kubert D. S., “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc. (3), 33:2 (1976), 193–237 | DOI | MR | Zbl
[9] Van Der Poorten A. J., Tran X. C., “Periodic continued fractions in elliptic function fields”, International Algorithmic Number Theory Symposium, Springer, Berlin–Heidelberg, 2002, 390–404 | MR | Zbl
[10] Pappalardi F., Van der Poorten A. J., “Pseudo-elliptic integrals, units, and torsion”, Journal of the Australian Mathematical Society, 79:3 (2004), 69–78 | MR
[11] Scherr Z. L., Rational polynomial pell equations, A dissertation submitted in partial fullment of the requirements for the degree of Doctor of Philosophy (Mathematics) in The University of Michigan, 2013 | Zbl
[12] Sadek M., “Periodic continued fractions and elliptic curves over quadratic fields”, Journal of Symbolic Computation, 76 (2016), 200–218 | DOI | MR | Zbl
[13] Berry T. G., “On periodicity of continued fractions in hyperelliptic function fields”, Arch. Math., 55 (1990), 259–266 | DOI | MR | Zbl
[14] Benyash-Krivets V. V., Platonov V. P., “Groups of S-units in hyperelliptic fields and continued fractions”, Sb. Math., 200:11 (2009), 1587–1615 | DOI | MR | Zbl
[15] Platonov V. P., Zhgoon V. S., Fedorov G. V., “Continued Rational Fractions in Hyperelliptic Fields and the Mumford Representation”, Dokl. Math., 94:3 (2016), 692–696 | DOI | MR | Zbl
[16] Platonov V. P., Fedorov G. V., “S-Units and Periodicity of Continued Fractions in Hyperelliptic Fields”, Dokl. Math., 92:3 (2015), 752–756 | DOI | MR | Zbl
[17] Platonov V. P., Petrunin M. M., “Groups of S-units and the problem of periodicity of continued fractions in hyperelliptic fields”, Proc. Steklov Inst. Math., 302 (2018), 336–357 | DOI | MR | Zbl
[18] Platonov V. P., Fedorov G. V., “On the problem of periodicity of continued fractions in hyperelliptic fields”, Sb. Math., 209:4 (2018), 519–559 | DOI | MR | Zbl
[19] Fedorov G. V., “Periodic continued fractions and S-units with second degree valuations in hyperelliptic fields”, Chebyshevskii Sbornik, 2018:3 (In Russ.)
[20] Platonov V. P., Fedorov G. V., “On the periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 95:3 (2017), 254–258 | DOI | MR | Zbl
[21] Platonov V. P., Fedorov G. V., “On the periodicity of continued fractions in elliptic fields”, Dokl. Math., 96:1 (2017), 332–335 | DOI | MR | Zbl
[22] Petrunin M. M., “S-units and periodicity of square root in hyperelliptic fields”, Dokl. Math., 95:3 (2017), 222–225 | DOI | MR | Zbl
[23] Platonov V. P., Petrunin M. M., “S-Units and periodicity in quadratic function fields”, Russian Math. Surveys, 71:5 (2016), 973–975 | DOI | MR | Zbl
[24] Platonov V. P., Petrunin M. M., “S-units in hyperelliptic fields and periodicity of continued fractions”, Dokl. Math., 94:2 (2016), 532–537 | DOI | MR | Zbl
[25] Zhgoon V. S, “On generalized jacobians and rational continued fractions in the hyperelliptic fields”, Chebyshevskii Sbornik, 18:4 (2017), 208–220 (In Russ.) | MR
[26] Platonov V. P., Fedorov G. V., “The criterion of the periodicity of continued fractions of key elements in hyperelliptic fields”, Chebyshevskii Sbornik, 2019:1, 246–258 (In Russ.)
[27] Schmidt W. M., “On continued fractions and diophantine approximation in power series fields”, Arch. Math., 95:2 (2000), 139–166 | MR | Zbl