Zeros of the Davenport--Heilbronn function in short intervals of the critical line
Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 306-329
Voir la notice de l'article provenant de la source Math-Net.Ru
Davenport and Heilbronn introduced the function $f(s)$ and showed that $f(s)$ satisfies the Riemannian type functional equation, however, the Riemann hypothesis fails for $f(s)$, and moreover, the number of zeros of $f(s)$ in the region $Re s>1$, $0$ exceeds $cT$, where $c>0$ is an absolute constant. S.M. Voronin proved that, nevertheless, the critical line $Re s=\frac12 $ is an exceptional set for the zeros of $f(s)$, i.e. for $N_0(T)$, where $N_0(T)$ is the number of zeros of $f(s)$ on the interval $Re s=\frac12$, $0$, we have the estimate $N_0(T)>cT\exp\left(0.05\sqrt{\ln\ln\ln\ln T}\right)$, where $c>0$ is an absolute constant, $T\ge T_0>0$. While studying the number of zeros of the function $f(s)$ in short intervals of the critical line, A.A. Karatsuba, proved: if $\varepsilon$ and $\varepsilon_1$ are arbitrarily small fixed positive numbers not exceeding $0.001 $; $T\geq T_0(\varepsilon,\varepsilon_1)>0$ and $H=T^{\frac{27}{82}+\varepsilon_1}$, then we have $$ N_0(T+H)-N_0(T)\ge H(\ln T)^{\frac{1}{2}-\varepsilon}. $$ This paper demonstrates that for the number of zeros of the Davenport-Heilbronn function $f(s)$ in short intervals of the form $[T,T+H]$ of the critical line the last relationship holds for $H\ge T^{\frac{131}{416}+\varepsilon_1}$. In particular, this result is an application of a new, in terms of exponential pairs, estimates of special exponential sums $W_j(T)$, $j=0,1,2$ which are uniform across parameters, where the problem of the non-triviality of estimates for these sums with respect to the parameter $H$ is reduced to the problem of finding the exponential pairs..
Keywords:
Davenport-Heilbronn function, exponential pair, Riemann hypothesis, Selberg soothing factors.
@article{CHEB_2019_20_4_a19,
author = {Z. Kh. Rakhmonov and Sh. A. Khayrulloev and A. S. Aminov},
title = {Zeros of the {Davenport--Heilbronn} function in short intervals of the critical line},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {306--329},
publisher = {mathdoc},
volume = {20},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a19/}
}
TY - JOUR AU - Z. Kh. Rakhmonov AU - Sh. A. Khayrulloev AU - A. S. Aminov TI - Zeros of the Davenport--Heilbronn function in short intervals of the critical line JO - Čebyševskij sbornik PY - 2019 SP - 306 EP - 329 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a19/ LA - ru ID - CHEB_2019_20_4_a19 ER -
%0 Journal Article %A Z. Kh. Rakhmonov %A Sh. A. Khayrulloev %A A. S. Aminov %T Zeros of the Davenport--Heilbronn function in short intervals of the critical line %J Čebyševskij sbornik %D 2019 %P 306-329 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a19/ %G ru %F CHEB_2019_20_4_a19
Z. Kh. Rakhmonov; Sh. A. Khayrulloev; A. S. Aminov. Zeros of the Davenport--Heilbronn function in short intervals of the critical line. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 306-329. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a19/