Zeros of the Davenport--Heilbronn function in short intervals of the critical line
Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 306-329.

Voir la notice de l'article provenant de la source Math-Net.Ru

Davenport and Heilbronn introduced the function $f(s)$ and showed that $f(s)$ satisfies the Riemannian type functional equation, however, the Riemann hypothesis fails for $f(s)$, and moreover, the number of zeros of $f(s)$ in the region $Re s>1$, $0$ exceeds $cT$, where $c>0$ is an absolute constant. S.M. Voronin proved that, nevertheless, the critical line $Re s=\frac12 $ is an exceptional set for the zeros of $f(s)$, i.e. for $N_0(T)$, where $N_0(T)$ is the number of zeros of $f(s)$ on the interval $Re s=\frac12$, $0$, we have the estimate $N_0(T)>cT\exp\left(0.05\sqrt{\ln\ln\ln\ln T}\right)$, where $c>0$ is an absolute constant, $T\ge T_0>0$. While studying the number of zeros of the function $f(s)$ in short intervals of the critical line, A.A. Karatsuba, proved: if $\varepsilon$ and $\varepsilon_1$ are arbitrarily small fixed positive numbers not exceeding $0.001 $; $T\geq T_0(\varepsilon,\varepsilon_1)>0$ and $H=T^{\frac{27}{82}+\varepsilon_1}$, then we have $$ N_0(T+H)-N_0(T)\ge H(\ln T)^{\frac{1}{2}-\varepsilon}. $$ This paper demonstrates that for the number of zeros of the Davenport-Heilbronn function $f(s)$ in short intervals of the form $[T,T+H]$ of the critical line the last relationship holds for $H\ge T^{\frac{131}{416}+\varepsilon_1}$. In particular, this result is an application of a new, in terms of exponential pairs, estimates of special exponential sums $W_j(T)$, $j=0,1,2$ which are uniform across parameters, where the problem of the non-triviality of estimates for these sums with respect to the parameter $H$ is reduced to the problem of finding the exponential pairs..
Keywords: Davenport-Heilbronn function, exponential pair, Riemann hypothesis, Selberg soothing factors.
@article{CHEB_2019_20_4_a19,
     author = {Z. Kh. Rakhmonov and Sh. A. Khayrulloev and A. S. Aminov},
     title = {Zeros of the {Davenport--Heilbronn} function in short intervals of the critical line},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {306--329},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a19/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
AU  - Sh. A. Khayrulloev
AU  - A. S. Aminov
TI  - Zeros of the Davenport--Heilbronn function in short intervals of the critical line
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 306
EP  - 329
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a19/
LA  - ru
ID  - CHEB_2019_20_4_a19
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%A Sh. A. Khayrulloev
%A A. S. Aminov
%T Zeros of the Davenport--Heilbronn function in short intervals of the critical line
%J Čebyševskij sbornik
%D 2019
%P 306-329
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a19/
%G ru
%F CHEB_2019_20_4_a19
Z. Kh. Rakhmonov; Sh. A. Khayrulloev; A. S. Aminov. Zeros of the Davenport--Heilbronn function in short intervals of the critical line. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 306-329. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a19/

[1] Davenport H., Heilbronn H., “On the zeros of certain Dirichlet series”, J. Lond. Math. Soc., 11 (1936), 181–185 ; 307–312 | DOI | MR

[2] Titchmarsh E. C., The theory of the Zeta function of Riemann, Oxford, 1953 | MR

[3] Voronin S. M., “Distribution of zeros of certain Dirichlet series”, Proc. Steklov Inst. Math., 163 (1984), 89–92 | MR | Zbl

[4] Voronin S. M., “On the zeros of some Dirichlet series lying on the critical line”, Math. USSR-Izv., 16:1 (1981), 55–82 | DOI | MR | Zbl | Zbl

[5] Karatsuba A. A., “On the zeros of the Davenport-Heilbronn function lying on the critical line”, Math. USSR-Izv., 36:2 (1990), 311–324 | DOI | MR | Zbl

[6] Voronin S. M., Karatsuba A. A., The Riemann zeta function, Fiziko-Matematicheskaya Literatura, M., 1994, 376 pp. | MR

[7] Karatsuba A. A., “On the zeros of arithmetic Dirichlet series without Euler product”, Russian Acad. Sci. Izv. Math., 43:2 (1994), 193–203 | DOI | Zbl

[8] Karatsuba A. A., “A new approach to the problem of the zeros of some Dirichlet series”, Proc. Steklov Inst. Math., 207 (1995), 163–177 | MR | Zbl

[9] Gritsenko S. A., “On the zeros of the Davenport-Heilbronn function”, Proc. Steklov Inst. Math., 296 (2017), 65–87 | DOI | MR | Zbl

[10] Gritsenko S. A., “On fractional moments of the mollified Dirichlet L-functions”, Chebyshevskii Sb., 18:4 (2017), 168–187 | DOI | Zbl

[11] Rakhmonov Z. Kh., “Estimate of the density of the zeros of the Riemann zeta function”, Russian Math. Surveys, 49:2 (1994), 168–169 | DOI | MR | Zbl

[12] Rakhmonov Z. Kh., “Density zeros of the Riemann zeta function in short rectangles of a critical strip”, Vestnik Khorogskogo universiteta, Seriya 1, 2002, no. 5, 1–25

[13] Rakhmonov Z. Kh., “Zeros of the Riemann zeta function in short intervals of the critical line”, Chebyshevskii Sbornik, 7:1(17) (2006), 263–269 | MR

[14] Rakhmonov Z. Kh., Khayrulloev Sh. A., “Distance between the next zeros of Riemann's zeta-function in the critical line”, Doklady Akademii nauk Respubliki Tajikistan, 49:5 (2006), 393–400

[15] Rakhmonov Z. Kh., Khayrulloev Sh. A., “The neibour zero of the Riemann's zeta-function laying on a critical line”, Doklady Akademii nauk Respubliki Tajikistan, 52:5 (2009), 331–337

[16] Rakhmonov Z. Kh., Aminov A. S., “On the zeros of an odd order of the Davenport-Heilbron function in short intervals of the critical line”, Doklady Akademii nauk Respubliki Tajikistan, 62:3-4 (2019), 133–138

[17] Huxley M. N., “Sums and Lattice Points III”, Proceedings of the London Mathematical Society, 87:3 (2003), 591–609 | DOI | MR | Zbl