Integrals and indicators of subharmonic functions.~II
Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 236-269.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is a direct continuation of the article [18]. At the beginning of the paper, we present those known results of the general theory of subharmonic functions, which are used in what follows. In the definition of a semi-formal order, it is required the existence of the real numbers $\delta>0$, $q\in(0,1)$ and $N$ such that an arbitrary domain $D(R,q,\delta)$ contains a point $z$ which satisfies $v(z)>NV(|z|)$ condition. This condition we call the Levin's condition. We weak this condition and require only that the necessary point $z$ be contained not in an arbitrary domain $D(R,q,\delta)$, but only for $R=R_n$, where $R_n$ is a sequence that converges to infinity. Functions that satisfy this weakened condition are called functions that locally satisfy Levin's condition. Our result related to this class of functions is that on the set $E=\left\{z: \arg z\in (0,\pi), |z|\in\bigcup\limits_{n=1}^{\infty}\biggl[qR_n,R_n/q\biggr]\right\}$ the function $v(z)$ behaves like a function of the semi-formal order $\rho(r)$. We also note assertions 1 and 3 of the theorem 2 associated with estimates of the full measure of sets that are not subsets of the set $E$. The main result is the theorem 7. In assertion 3 of this theorem we fix a new property of subharmonic functions of finite order, which, together with the property formulated in theorem 3, can be considered as one of the most important properties that distinguish subharmonic functions in the class of all functions. If shift the Riesz measures of a subharmonic function $v(z)$, that are located inside some angle $S$ of size $2\Delta$, to the boundary of this angle and to denote by $v_{\Delta}(z)$ a subharmonic function with a shifted Riesz measure, then the resulting function can be regarded as an approximation of the function $v(z)$. This approximation is a harmonic function inside $S$. We obtain an integral estimate for the modulus of the difference $|v(z)-v_{\Delta}(z)|$, which is qualitatively better than the estimate of the corresponding integral for $|v(z)| $. A special case when the lower indicator of the function $v$ is finite on the bisector of the angle $S$ is investigated.
Keywords: subharmonic function, semi-formal order, local Levin's condition, Riesz measure, function indicator.
@article{CHEB_2019_20_4_a16,
     author = {K. G. Malyutin and M. V. Kabanko and T. I. Malyutina},
     title = {Integrals and indicators of subharmonic {functions.~II}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {236--269},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a16/}
}
TY  - JOUR
AU  - K. G. Malyutin
AU  - M. V. Kabanko
AU  - T. I. Malyutina
TI  - Integrals and indicators of subharmonic functions.~II
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 236
EP  - 269
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a16/
LA  - ru
ID  - CHEB_2019_20_4_a16
ER  - 
%0 Journal Article
%A K. G. Malyutin
%A M. V. Kabanko
%A T. I. Malyutina
%T Integrals and indicators of subharmonic functions.~II
%J Čebyševskij sbornik
%D 2019
%P 236-269
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a16/
%G ru
%F CHEB_2019_20_4_a16
K. G. Malyutin; M. V. Kabanko; T. I. Malyutina. Integrals and indicators of subharmonic functions.~II. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 236-269. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a16/

[1] Azarin V. S., “On the asymptotic behavior of subharmonic functions of finite order”, Math. USSR-Sb., 36:2 (1980), 135–154 | DOI | MR | Zbl

[2] Govorov N. V., “On the indicator of functions of non-integer order, analytic and completely regular growth in the half-plane”, Doklady Akademii nauk SSSR, 162:3 (1965), 495–498 | MR | Zbl

[3] Govorov N. V., “On the indicator of functions of integer order, analytic and completely regular growth in the half-plane”, Doklady Akademii nauk SSSR, 172:4 (1967), 763–766 | MR | Zbl

[4] Gol'dberg A. A., Ostrovskii I. V., Value Distribution of Meromorphic Functions, Nauka, M., 1970 | MR

[5] Gol'dberg A. A., Ostrovskii I. V., “Indicators of entire functions of finite order that can be represented by Dirichlet series”, Leningrad Mathematical Journal, 2:3 (1991), 589–612 | MR | Zbl | Zbl

[6] Grishin A. F., “On regularity of the growth of subharmonic functions. I”, Teor. funktsii, funkts. analiz i ih pril., 6, 1968, 3–29 | Zbl

[7] Grishin A. F., “On regularity of the growth of subharmonic functions. II”, Teor. funktsii, funkts. analiz i ih pril., 7, 1968, 59–84 | Zbl

[8] Grishin A. F., “On regularity of the growth of subharmonic functions. III”, Teor. funktsii, funkts. analiz i ih pril., 8, 1969, 126–135 | Zbl

[9] Grishin A. F., “Continuity and asymptotic continuity of subharmonic functions. I”, Mathematical Physics, Analysis and Geometry, 1:2 (1994), 193–215 | MR | Zbl

[10] Grishin A. F., “Continuity and asymptotic continuity of subharmonic functions. II”, Mathematical Physics, Analysis and Geometry, 2:2 (1995), 177–193 | MR | Zbl

[11] Kondratyuk A. A., “The Fourier series method for entire and meromorphic functions of completely regular growth”, Math. USSR-Sb., 35:1 (1979), 63–84 | DOI | MR | Zbl | Zbl

[12] Kondratyuk A. A., “The Fourier series method for entire and meromorphic functions of completely regular growth. II”, Math. USSR-Sb., 41:1 (1982), 101–113 | DOI | MR | MR | Zbl

[13] Kondratyuk A. A., “The Fourier series method for entire and meromorphic functions of completely regular growth. III”, Math. USSR-Sb., 48:2 (1984), 327–338 | DOI | MR | MR | Zbl | Zbl

[14] Koosis P., Introduction to $H_p$ Spaces, Cambridge University Press, Cambridge–London–New York–New Rochelle–Melbourne–Sydney, 1980 | MR | MR | Zbl

[15] Levin B. Ya., “On the growth of an entire function along a ray, and the distribution of its zeros with respect to their arguments”, Math. USSR-Sb., 2(44):6 (1937), 1097–1142

[16] Levin B. Ya., Distribution of zeros of entire functions, Amer. Math. Soc., Providence, RI, 1980 | MR

[17] Malyutin K. G., “Fourier series and $\delta$-subharmonic functions of finite $\gamma$-type in a half-plane”, Sb. Math., 192:6 (2001), 843–861 | DOI | MR | Zbl

[18] Malyutin K. G., Kabanko M. V., Malyutina T. I., “Integrals and indicators of subharmonic functions. I”, Chebyshevskii sbornik, 19:2 (2018), 272–303 | Zbl

[19] Malyutin K. G., Sadik N., “Delta-subharmonic functions of a completely regular growth in the half-plane”, Doklady Mathematics, 380:3 (2001), 1–3

[20] Bernstein V., “Sopra una proposizione relativa alla crescenza delle funzioni holomorfe”, Ann. Scuola norm sup. Pisa, 2:2 (1933), 381–399 | MR | Zbl

[21] Fedorov M. A., Grishin A. F., “Some Questions of the Nevanlinna Theory for the Complex Half-Plane”, Mathematical Physics, Analysis and Geometry, 1:3 (1998), 1–49 | MR

[22] Pfluger A., “Die Wertverteilung und das Verhalten von Betrag und Argument einer speziellen Klasse analytischer Functionen. I”, Comm. Math. Helv., 11 (1938), 180–213 | DOI | MR

[23] Pfluger A., “Die Wertverteilung und das Verhalten von Betrag und Argument einer speziellen Klasse analytischer Functionen. II”, Comm. Math. Helv., 12 (1939), 25–69 | DOI | MR