Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_4_a15, author = {M. Y. Luchin and V. H. Salikhov and E. S. Zolotukhina}, title = {On astimate of irrationality measure of the logariphms of some rational numbers}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {226--235}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a15/} }
TY - JOUR AU - M. Y. Luchin AU - V. H. Salikhov AU - E. S. Zolotukhina TI - On astimate of irrationality measure of the logariphms of some rational numbers JO - Čebyševskij sbornik PY - 2019 SP - 226 EP - 235 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a15/ LA - ru ID - CHEB_2019_20_4_a15 ER -
%0 Journal Article %A M. Y. Luchin %A V. H. Salikhov %A E. S. Zolotukhina %T On astimate of irrationality measure of the logariphms of some rational numbers %J Čebyševskij sbornik %D 2019 %P 226-235 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a15/ %G ru %F CHEB_2019_20_4_a15
M. Y. Luchin; V. H. Salikhov; E. S. Zolotukhina. On astimate of irrationality measure of the logariphms of some rational numbers. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 226-235. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a15/
[1] Rhin G., “Approximants de Padé et mesures effectives d'irrationalité”, Progr. in Math., 71 (1987), 155–164 | DOI | MR | Zbl
[2] Salikhov V. H., “On the irrationality measures of $\pi$”, Russian Mathematical Surveys, 63:3 (2008), 163–164 (Russian) | MR | Zbl
[3] Salnikova E. S., “On irrationality measures of some values of the Gauss function”, Chebyshevskii Sbornik, 8:2 (2007), 88–96 (Russian) | MR | Zbl
[4] Bashmakova M. G, “Approximation of values of the Gauss hypergeometric function by rational fractions”, Mathematical Notes, 88:6 (2010), 785–797 (Russian) | Zbl
[5] Luchin M. Yu., “The estimate of the irrationality measures of number $\ln\frac{7}{4}$”, Chebyshevskii Sbornik, 14:2 (2013), 123–131 (Russian) | Zbl
[6] Salikhov V. H., “On the irrationality measures of $\ln3$”, Doklady Mathematics, 417:6 (2007), 753–755 (Russian) | Zbl
[7] Q. Wu, L. Wang, “On the irrationality measure of $\log3$”, Journal of Number Theory, 142 (2014), 264–273 | DOI | MR | Zbl
[8] Bondareva I., Luchin M., Salikhov V. H., “Symmetrized polynimials in a problem of estimating of the irrationality measure of number $\ln3$”, Chebyshevskii Sbornik, 19:1 (2018), 15–25 (Russian) | MR | Zbl
[9] Bondareva I., Luchin M., Salikhov, V. H., “On the irrationality measure of $\ln7$”, Mathematical Notes (Russian)
[10] Salikhov V. H., Zolotukhina E. S., “On the irrationality measure of $\ln{\frac{5}{3}}$”, Chebyshevskii Sbornik (Russian)
[11] Tomashevskaya E. B, “On Diophantine approximations to $\log x$”, J. Math. Sci., 182:4 (2012), 552–559 | DOI | MR | Zbl
[12] Salnikova E. S., “Diophantine approximations of $\log2$ and other logarithms”, Mathematical Notes, 83:3 (2008), 428–438 (Russian) | MR | Zbl
[13] Heimonen A., Matala-aho T., Väänänen K., “On irrationality measures of the values of Gauss hypergeometric function”, Manuscripta Math., 81 (1993), 183–202 | DOI | MR | Zbl
[14] Hata M., “Rational approximations to $\pi$ and some other numbers”, Acta Arith., LXIII:4 (1993), 325–349 | MR
[15] Wu Q., “On the linear independence measure of logarithms of rational numbers”, Math. Comput., 72:242 (2002), 901–911 | DOI | MR