Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_4_a14, author = {M. I. Ilolov and D. N. Guljonov and J. Sh. Rahmatov}, title = {Functional differential inclusions of {Hale} type with fractional order of derivative in a {Banach} space}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {208--225}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a14/} }
TY - JOUR AU - M. I. Ilolov AU - D. N. Guljonov AU - J. Sh. Rahmatov TI - Functional differential inclusions of Hale type with fractional order of derivative in a Banach space JO - Čebyševskij sbornik PY - 2019 SP - 208 EP - 225 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a14/ LA - ru ID - CHEB_2019_20_4_a14 ER -
%0 Journal Article %A M. I. Ilolov %A D. N. Guljonov %A J. Sh. Rahmatov %T Functional differential inclusions of Hale type with fractional order of derivative in a Banach space %J Čebyševskij sbornik %D 2019 %P 208-225 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a14/ %G ru %F CHEB_2019_20_4_a14
M. I. Ilolov; D. N. Guljonov; J. Sh. Rahmatov. Functional differential inclusions of Hale type with fractional order of derivative in a Banach space. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 208-225. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a14/
[1] A. Tolstonogov, Differential Inclusions in a Banach Space, Springer, Netherlands, 2000 | MR
[2] Agarval R. P. et all, “Viability theory and fuzzy differential equations”, Fuzzy Sets and Functions, 151:3 (2005), 563–580 | DOI | MR
[3] M. I. Obukhovskii, V. V. Kamenskii, P. Zecca, Condencing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Grayter, Berlin, 2001 | MR
[4] J-P. Aubin, A. Cellina, Differential Inclusions-Set-valued Maps and Viability Theory, Springer, Berlin, 1984 | MR | Zbl
[5] R. J. Auman, “Integrals of set-valued functions”, An. Appl., 12 (1965), 1–12 | MR | Zbl
[6] J. P. Aubin, F. H. Clarke, “Monotone invariant solutions to differential inclusions”, J. London Math. Soc., 16 (1977), 357–366 | MR | Zbl
[7] A. Filippov, Differential Equations with Discontinous Righthand Sides, Springer Netherlands, 1988 | MR
[8] G. V. Smirnov, Introduction to the theory of Differential Inclusons, Graduate Studies in Mathematics, 41, AMS, Providence, Rhode Island, 2002 | MR
[9] M. Feckan, J. R. Wang, M. Pospishil, Fractional-Order Equations and Inclusions, De Grayter, Berlin, 2017 | MR
[10] M. Benchohra, J. Henderson, S. Ntougas, A. Quahab, “Existence results for fractional order functional differential equations with infinity delay”, J. Math. Anal. Appl., 338 (2008), 1340–1350 | DOI | MR | Zbl
[11] Kh. Aissani, M. Benchohra, K. Ezzinbi, “Fractional Integro-Differential Inclusions with statedependent delay”, Differential Inclusions, Control and Optimization, 34 (2014), 153–167 | DOI | MR | Zbl
[12] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. G. Yao, “On semilinear fractional order differential inclusions in Banach Spaces”, Fixed Point Theory, 18:1 (2017), 269–292 | DOI | MR | Zbl
[13] M. Kamenskii, V. Obukhovskii, G. Petrosyan, J. G. Yao, “Boundary value problems for semilinear differential inclusions of fractional order in a Banach Space”, Applicable Analys J., 96:4 (2017), 571–591 | MR
[14] J. Hale, Theory of Functional Differential Equations, Springer, New York, 1977 | MR | Zbl
[15] Ilolov M., “On the theory of abstract evolutionary Hale equations”, Docl. AS Taj SSR, 33:7 (1990), 430–433 | MR | Zbl
[16] Ilolov M., “Functional differential Hale equations with unbounded operators”, Bulletin of the Taj State University, Mathematics, 1990, no. 5, 65–69
[17] Ilolov M., “Functional differential Hale equations in a Banach space”, Ukrainian Mathematical Journal, 42:7 (1990), 918–924 | MR | Zbl
[18] Ilolov M., “On Hale equations with unbounded operators in a Banach space”, Docl. AS Taj. SSR, 34:5 (1991), 267–270 | MR | Zbl
[19] Ilolov M., Kuchakshoev Kh. S., Guljonov D. N., “On fractional linear Volterra equations in Banach spaces”, Reports of the Academy of Sciences of the RT, 61:2 (2018), 113–120
[20] Ilolov M., Guljonov D. N., Rahmatov J. Sh., “Hale type fractional integro-differential inclusions in Banach space”, News of the Academy of Sciences of the Republic of Tajikistan, Department of Physical, Mathematical, Chemical, Geological and Technical Sciences, 2019, no. 1 (174), 7–17
[21] Ilolov M., “Generalized fractional Liouville-Lizorkin derivatives and some of their properties”, Materials Int. scientific conference dedicated to the 80th anniversary of academician V. A. Sadovnichii, MAKS-Press, M., 2019, 64–66
[22] Yosida K., Functional analysis, Mir, M., 1967
[23] R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina, B. N. Sadovskii, Measures of Noncompactness and Condencing Operators, Springer, Berlin, 1992 | MR
[24] M. Martelli, “A Rothe's Type Theorem for Noncompact A cyclic valued Map”, Bull. Un. Math. Ital., 4 (1975), 70–76 | MR
[25] A. A. Kilbas, M. Srivastava Hary, J. Trujillo Juan, Theory and Applications of Fractional Differential Equations, Elsevier Science BoV., Amsterdam, 2006 | MR | Zbl
[26] A. Lasota, Z. Opial, “An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations”, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys., 13 (1965), 781–786 | MR | Zbl
[27] S. Hu, N. S. Papageorgiou, Handbook of Multivalued Analysis, v. II, Applications, Springer Science and Business Media, 2013 | MR