Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_4_a11, author = {O. Kh. Karimov}, title = {{\CYRO}n separability and coercive solvability of second-order nonlinear differential equations in the weight space}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {170--187}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a11/} }
TY - JOUR AU - O. Kh. Karimov TI - Оn separability and coercive solvability of second-order nonlinear differential equations in the weight space JO - Čebyševskij sbornik PY - 2019 SP - 170 EP - 187 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a11/ LA - ru ID - CHEB_2019_20_4_a11 ER -
O. Kh. Karimov. Оn separability and coercive solvability of second-order nonlinear differential equations in the weight space. Čebyševskij sbornik, Tome 20 (2019) no. 4, pp. 170-187. http://geodesic.mathdoc.fr/item/CHEB_2019_20_4_a11/
[1] Everitt W. N., Gierz M., “Some properties of the domains of certain differential operators”, Proc. London Math. Soc., 23 (1971), 301–324 | DOI | MR | Zbl
[2] Everitt W. N., Gierz M., “On some properties of the powers of a family self-adjoint differential expressions”, Proc. London Math. Soc., 24 (1972), 149–170 | DOI | MR | Zbl
[3] Everitt W. N., Gierz M., “Some inequalities associated with certain differential operators”, Math. Z., 126 (1972), 308–326 | DOI | MR | Zbl
[4] Everitt W. N., Gierz M., “Inequalities and separation for Schrodinger -type operators in $L_2(R^n)$”, Proc. Roy. Soc. Edinburg, Sect. A, 79 (1977), 149–170 | MR
[5] Boimatov K. Kh., “Theorems of separability”, Doklady Akad. Nauk SSSR, 213:5 (1973), 1009–1011
[6] Boimatov K. Kh., “Separability theorems, weighted spaces and their applications”, Proc. of the Math. Inst. of the USSR Academy of Sciences im. Steklova, 170, 1984, 37–76
[7] Boimatov K. Kh., “Coercive estimates and separability for second order elliptic differential equations”, Doklady Akad. Nauk SSSR, 301:5 (1988), 1033–1036
[8] Boimatov K. Kh., Saripov A., “Coercive properties of nonlinear Schrodinger and Dirac operators”, Reports of the Russian Academy of Sciences, 326:3 (1992), 393–398
[9] Boimatov K. Kh., “Coercive estimates and separability theorems for differential operators of the second order”, Mathematical notes, 46:6 (1989), 110–112 | MR
[10] Otelbaev M., “Coercitive estimates and separability theorems for elliptic equations in $R^n$”, Proc. of the Math. Inst. of the USSR Academy of Sciences im. Steklova, 161, 1983, 195–217 | MR | Zbl
[11] Gadoev M. G., Konobulov S. I., “Coercive solvability of elliptic operators in Banach spaces”, Siberian Journal of Industrial Mathematics, VI:2(14) (2003), 27–30 | MR
[12] Muratbekov M. B., Otelbaev M., “Smoothness and approximation properties of solutions of a class of nonlinear equations of Schrodinger”, Proc.of the univer. of math., 1989, no. 3, 44–48
[13] Muratbekov M. B., Muratbekov M. M., Ospanov K. N., “Coercive solvability of odd-order differential equations and its applications”, Dokl. Mathematics, 435:3 (2010), 310–313 | Zbl
[14] Zayed E. M. E., “Separation for the biharmonic differential operator in the Hilbert space associated with existence and uniqueness theorem”, J. Math. Anal. Appl., 337 (2008), 659–666 | DOI | MR | Zbl
[15] Zayed E. M. E., Salem Omram, “Separation for triple-harmonic differential operator in the Hilbert”, International J. Math. Combin., 4 (2010), 13–23 | Zbl
[16] Zayed E. M. E., Mohamed A. S., Atia H. A., “Inequalities and separation for the Laplace-Beltrami differential operator in Hilbert spaces”, J. Math. Anal. Appl., 336 (2007), 81–92 | DOI | MR | Zbl
[17] Zayed E. M. E., “Separation for an elliptic differential operators in a weighted its application to an existence and uniqueness theorem”, Dynamits of continuous, discrede and impulsive systems. Series A: Mathematical Analysis, 22 (2015), 409–421 | MR | Zbl
[18] Karimov O. Kh., “On separation of second order nonlinear differential operators with matrix coefficients”, Izvestiya Akademii nauk Respubliki Tajikistan. Otdeleniye fiziko-matematicheskikh, khimicheskikh, geologicheskikh i tekhnicheskikh nauk, 2014, no. 4(157), 42–50 (in Russian)
[19] Karimov O. Kh., “On separation of nonlinear second order nonlinear differential operators with matrix coefficients in a weighted space”, Doklady Akademii nauk Respubliki Tajikistan, 58:8 (2015), 665–673 (in Russian)
[20] Karimov O. Kh., “Coercive properties and separability biharmonic operator with matrix potential”, Ufa mathematical journal, 9:1 (2017), 55–62 | Zbl
[21] Karimov O. Kh., “Coercive estimate and separation theorem for one nonlinear differential operator in a Hilbert space”, Chebyshevskii Sb., 18:4 (2017), 245–254 | DOI | MR
[22] Karimov O. Kh., “On coercive solvability the schrodinger equation in a Hilbert space”, Doklady Akademii nauk Respubliki Tajikistan, 61:11–12 (2018), 829–836 (in Russian)
[23] Karimov O. Kh., “On the separation property of nonlinear second-order differential operators with matrix coefficients in weighted spaces”, Journal of mathematical sciences, 241:5 (2019), 589–595 | DOI | MR | Zbl