Inaba extension of complete field of characteristic~$0$
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 124-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to $p$-extensions of complete discrete valuation fields of mixed characteristic where $p$ is the characteristic of the residue field. It is known that any totally ramified Galois extension with a non-maximal ramification jump can be determined by an Artin-Schreier equation, and the upper bound for the ramification jump corresponds to the lower bound of the valuation in the right-hand side of the equation. The problem of construction of extensions with arbitrary Galois groups is not solved. Inaba considered $p$-extensions of fields of characteristic $p$ corresponding to a matrix equation $X^{(p)}=AX$ herein referred to as Inaba equation. Here $X^{(p)}$ is the result of raising each element of a square matrix $X$ to power $p$, and $A$ is a unipotent matrix over a given field. Such an equation determines a sequence of Artin-Schreier extensions. It was proved that any Inaba equation determines a Galois extension, and vice versa any finite Galois $p$-extension can be determined by an equation of this sort. In this article for mixed characteristic fields we prove that an extension given by an Inaba extension is a Galois extension provided that the valuations of the elements of the matrix $A$ satisfy certain lower bounds, i. e., the ramification jumps of intermediate extensions of degree $p$ are sufficiently small. This construction can be used in studying the field embedding problem in Galois theory. It is proved that any non-cyclic Galois extension of degree $p^2$ with sufficiently small ramification jumps can be embedded into an extension with the Galois group isomorphic to the group of unipotent $3\times 3$ matrices over $\mathbb F_p$. The final part of the article contains a number of open questions that can be possibly approached by means of this construction.
Keywords: discrete valuation field, ramification jump, Artin-Schreier equation.
@article{CHEB_2019_20_3_a8,
     author = {S. V. Vostokov and I. B. Zhukov and O. Yu. Ivanova},
     title = {Inaba extension of complete field of characteristic~$0$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {124--133},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a8/}
}
TY  - JOUR
AU  - S. V. Vostokov
AU  - I. B. Zhukov
AU  - O. Yu. Ivanova
TI  - Inaba extension of complete field of characteristic~$0$
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 124
EP  - 133
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a8/
LA  - ru
ID  - CHEB_2019_20_3_a8
ER  - 
%0 Journal Article
%A S. V. Vostokov
%A I. B. Zhukov
%A O. Yu. Ivanova
%T Inaba extension of complete field of characteristic~$0$
%J Čebyševskij sbornik
%D 2019
%P 124-133
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a8/
%G ru
%F CHEB_2019_20_3_a8
S. V. Vostokov; I. B. Zhukov; O. Yu. Ivanova. Inaba extension of complete field of characteristic~$0$. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 124-133. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a8/

[1] J. W. S. Cassels, A. Frohlich, Algebraic Number Theory, Academic Press, London–New-York, 1967 | MR | Zbl

[2] I. B. Fesenko, S. V. Vostokov, Local fields and their extensions. A constructive approach, Second edition, AMS, Providence, RI, 2002 | MR

[3] O. Hyodo, “Wild ramification in the imperfect residue field case”, Adv. Stud. Pure Math., 12 (1987), 287–314 | MR | Zbl

[4] E. Inaba, “On matrix equations for Galois extensions of fields with characteristic p”, Natur. Sci. Rep. Ochanomizu Univ., 12 (1961), 26–36 | MR | Zbl

[5] E. Inaba, “On generalized Artin-Schreier equations”, Natur. Sci. Rep. Ochanomizu Univ., 13:2 (1962), 1–13 | MR | Zbl

[6] R. E. MacKenzie, G. Whaples, “Artin-Schreier equations in characteristic zero”, Amer. J. Math., 78 (1956), 473–485 | MR | Zbl

[7] H. Miki, “On $Z_p$-extensions of complete p-adic power series fields and function fields”, J. Fac. Sci. Univ. Tokyo, Sect 1A, 21 (1974), 377–393 | MR | Zbl

[8] L. Xiao, I. Zhukov, “Ramification in the imperfect residue field case, approaches and questions”, Algebra i analiz, 26:5 (2014), 695–740 | MR

[9] I. Zhukov, “Explicit abelian extensions of complete discrete valuation fields”, Invitation to Higher Local Fields, Geometry and Topology Monographs, 3, eds. Fesenko I., Kurihara M., 2000, 117–122 | MR | Zbl

[10] Fesenko I. B., Vostokov S. V., Zhukov I. B., “On the theory of multidimensional local fields. Methods and constructions”, Algebra i Analiz, 2:4 (1990), 91–118 | MR | Zbl

[11] Vostokov S. V., Zhukov I. B., Pak G. K., “Extensions with almost maximal depth of ramification”, J. Math. Sci., 112:3 (1999), 4285–4302 | MR | Zbl

[12] Vostokov S. V., Zhukov I. B., “Some approaches to the construction of abelian extensions for $\mathfrak p$-adic fields”, Proceedings of the St. Petersburg Mathematical Society, v. III, Amer. Math. Soc. Transl. Ser. 2, 166, Amer. Math. Soc., Providence, RI, 1995, 157–174 | MR | Zbl | Zbl

[13] Zhukov I. B., “Structure theorems for complete fields”, Proceedings of the St. Petersburg Mathematical Society, v. III, Amer. Math. Soc. Transl. Ser. 2, 166, Amer. Math. Soc., Providence, RI, 1995, 175–192 | MR | MR | Zbl | Zbl

[14] Zhukov I. B., Lysenko E. F., “Construction of cyclic extensions of degree $p^2$ for a complete field”, J. Math. Sci., 234:2 (2018), 148–157 | MR | Zbl

[15] Madunts A. I., “Lubin-Tate Formal Groups over the Ring of Integers of a Multidimensional Local Field”, J. Math. Sci., 120:4 (2004), 1609–1612 | MR | Zbl