Development of mechanisms of hydrogen cracking of metal systems and methods to protect steel products from corrosion-mechanical destruction
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 478-493.

Voir la notice de l'article provenant de la source Math-Net.Ru

The brittle destruction of high-strength metals and alloys used in the chemical and oil refining industry, caused by the influence of aggressive hydrogen-containing media, is a serious scientific issue, the relevance of which has increased dramatically in recent decades due to the discovery of the anomalous hydrogen effects on the complex properties of metals and alloys (abnormal plastic auto-deformation of iron, structural-phase transformations, synergistic effects of microplasticity, effect of reversible shape loss in amorphous metal alloys, and many others). A significant number of hydrogen sources (corrosion in aqueous solutions, hydrogen absorption in the production of welding operations and application of technological protective coatings or cathodic protection of underground pipelines) causes significant difficulties in describing the processes of hydrogen degradation of metal materials. Degradation is manifested in various ways, such as: hydrogen cracking of high-strength steels; hydrogen participation in the process of stress corrosion cracking of stainless steels; cracking of nuclear reactor tubes made of zirconium alloys and embrittlement of titanium alloys by hydride formation, GaAs degradation of monolithic microwave integrated circuits on satellites, etc. The harmful effect of hydrogen on mechanical properties was first noted by Johnson in 1875. Since then, scientists have made many advances in the development of metals with optimal parameters of strength and plasticity. Despite many years of research, the problem of interaction of metal-hydrogen systems remains open due to the variety of approaches and techniques to the assessment of embrittlement effects of hydrogen and hydrogen-containing media. So far it has not been possible to establish a single mechanism of interaction of hydrogen with metal materials, which would explain the whole set of phenomena, related to hydrogen destruction. Therefore, to analyze the mechanisms of hydrogen cracking of metal systems and to develop methods of steel products protection from corrosion-mechanical destruction are relevant areas of scientific and practical activities.
Keywords: hydrogen cracking, metal systems, corrosion-mechanical destruction, resource-saving technologies.
@article{CHEB_2019_20_3_a32,
     author = {N. N. Sergeev and A. N. Sergeev and A. E. Gvozdev and P. N. Medvedev and S. N. Kutepov and D. V. Maliy},
     title = {Development of mechanisms of hydrogen cracking of metal systems and methods to protect steel products from corrosion-mechanical destruction},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {478--493},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a32/}
}
TY  - JOUR
AU  - N. N. Sergeev
AU  - A. N. Sergeev
AU  - A. E. Gvozdev
AU  - P. N. Medvedev
AU  - S. N. Kutepov
AU  - D. V. Maliy
TI  - Development of mechanisms of hydrogen cracking of metal systems and methods to protect steel products from corrosion-mechanical destruction
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 478
EP  - 493
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a32/
LA  - ru
ID  - CHEB_2019_20_3_a32
ER  - 
%0 Journal Article
%A N. N. Sergeev
%A A. N. Sergeev
%A A. E. Gvozdev
%A P. N. Medvedev
%A S. N. Kutepov
%A D. V. Maliy
%T Development of mechanisms of hydrogen cracking of metal systems and methods to protect steel products from corrosion-mechanical destruction
%J Čebyševskij sbornik
%D 2019
%P 478-493
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a32/
%G ru
%F CHEB_2019_20_3_a32
N. N. Sergeev; A. N. Sergeev; A. E. Gvozdev; P. N. Medvedev; S. N. Kutepov; D. V. Maliy. Development of mechanisms of hydrogen cracking of metal systems and methods to protect steel products from corrosion-mechanical destruction. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 478-493. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a32/

[1] Shashkova L. V., Fractal-synergetic aspects of local micro-damage and destruction of diffusion-activated hydrogen steel, Dis. ... d-ra fiz.-mat. nauk, M., 2014, 336 pp.

[2] Shapovalov V. I., Hydrogen doping, Zhurfond, Dnepropetrovsk, 2013, 385 pp.

[3] Hirth J. P., “Effects of hydrogen on the properties of iron and steel”, Metall. Trans. A, 11A (1980), 861–890

[4] Troiano A. R., Hehemann R. F., “Stress corrosion cracking of ferritic and austenitic stainless steels”, Hydrogen Embrittlement and Stress Corrosion Cracking, eds. R. Gibala, R. F. Hehemann, ASM, 1995, 231–248

[5] Birnbaum H. K., “Mechanisms of hydrogen related fracture of metals”, Hydrogen effects on materials behavior, eds. N.R. Moody, A.W Thompson, TMS, Warrendale, PA, 1990, 639–658

[6] Lynch S. P., “Mechanistic and fractographic aspects of stress-corrosion cracking (SCC)”, Stress Corrosion Cracking, Chapter 1, Woodhead Publishing Limited, 2011, 3–89

[7] Lynch S. P., “Hydrogen embrittlement (HE) phenomena and mechanisms”, Stress Corrosion Cracking, Chapter 2, Woodhead Publishing Limited, 2011, 90–130

[8] Sergeev N.N., Sergeev A.N., Kutepov S.N., et al., “Analysis of theoretical ideas about the mechanisms of hydrogen cracking of metals and alloys”, Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta, 21:3(72) (2017), 6–33

[9] Sergeev N.N., Kutepov S.N., Gvozdev A.E., et al., “Mechanisms of hydrogen cracking of metals and alloys associated with increased dislocation activity”, Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta, 21:2(71) (2017), 32–47

[10] Sergeev N. N., Sergeev A. N., Mechanical properties and internal friction of high-strength steels in corrosive environments, Izd-vo TulGU, Tula, 2018, 430 pp.

[11] Metals, alloys, coatings and products: hydrogen embrittlement test Methods, GOST R 9.915-2010, Standartinform, M., 2010, 36 pp.

[12] “ASTM F519-17. Standard Test Method for Mechanical Hydrogen Embrittlement Evaluation of Plating/Coating Processes and Service Environments”, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, USA, 2017

[13] Unified system of protection against corrosion and aging. Metals and alloys. General requirements for corrosion cracking test methods, GOST 9.901.1-89, Standartinform, M., 1993, 21 pp.

[14] Unified system of protection against corrosion and aging. Metals and alloys. Tests for corrosion cracking of specimens under uniaxial tension, GOST 9.901.4-89, Standartinform, M., 1993, 7 pp.

[15] Unified system of protection against corrosion and aging. Steel and alloys high strength. Accelerated Corrosion Cracking Test Methods, GOST 9.903-81, Standartinform, M., 1993, 16 pp.

[16] Metals. Dynamic method of determining the characteristics of elasticity, GOST 25156-82, Standartinform, M., 1982, 21 pp.

[17] S. M. Myers, M. I. Baskes, H. K. Birnbaum, J. W. Corbett, G. G. DeLeo, S. K. Estreicher, E. E. Mailer, P. Jena, N. M. Johnson, R. Kirchheim, S. J. Pearton, M. J. Stavola, “Hydrogen interactions with defects in crystalline solids”, Rev. Mod. Phys., 64:2 (1992), 559–617

[18] Kutepov S. N., “On some aspects of hydrogen interaction with dislocation clusters in metals and alloys”, Physics and chemistry and technology of inorganic materials, Proceedings of XIV Russian annual conference of young researchers and graduate students, IMET RAN, M., 2017, 42–44

[19] Kirchheim R., Hirth J. P., “Hydrogen adsorption at cracks in Fe, Nb and Pd”, Scr. Metall, 16 (1982), 475–478

[20] Zhang T.-Y., Hack J., “The equilibrium concentration of hydrogen atoms ahead of a mixed mode I-mode III crack tip in single crystal iron”, Metall. Mater. Trans. A, 30A (1999), 155–159

[21] Hirth J. P., Carnahan B., “Hydrogen adsorption at dislocations and cracks in Fe”, Acta Metall, 26 (1978), 1795–1803

[22] Sergeev N.N., Sergeev A.N., Kutepov S.N., “Mechanisms of hydrogen cracking of metals and alloys. Part I (REVIEW)”, Materialovedenie, 2018, no. 3, 27–33

[23] Sergeev N. N., Sergeev A. N., Kutepov S. N., “Mechanisms of hydrogen cracking of metals and alloys. Part II (REVIEW)”, Materialovedenie, 2018, no. 4, 20–29

[24] Nelson H. G., “Hydrogen embrittlement”, Treatise on Materials Science and Technologie, 25 (1983), 275–359

[25] Tien J. K., Thomson A. W., Bernstein I. M., Richards R. J., “Hydrogen transport by dislocation”, Metall. Trans. A, 7A (1976), 821–829

[26] Golovin S. A., Golovin I. S., “Mechanical spectroscopy of relaxation Chukovskogo type”, Metallovedenie i termicheskaya obrabotka metallov, 2012, no. 5 (683), 3–11

[27] Chukanov A. N., Yakovenko A. A., “Role of hydrogen in degradation and destruction of low-carbon steels”, Izvestiya TulGU, Seriya: Estestvennye nauki, 2012, no. 1, 211–219

[28] Chukanov A. N., Yakovenko A. A., Wide I. F., “Mechanical spectroscopy in the study of substructural degradation of carbon steels”, Vestnik TGU, 18:4 (2013), 1625–1626

[29] Shorshorov M. H., Gvozdev A. E., Zolotukhin I. V., et al., Development of advanced technologies for production and processing of metals, alloys, powder and composite nanomaterials, Izd-vo TulGU, Tula, 2016, 235 pp.

[30] Sergeev N. N., Gvozdev A. E., Sergeev A. N., et al., Resources strain the ability of different materials, Izd-vo TulGU, Tula, 2016, 172 pp.

[31] Gvozdev A.E., Sergeev N.N., Minaev I.V., et al., “The role of the embryo formation process in the development of some first-order phase transitions”, Materialovedenie, 2015, no. 1, 15–21

[32] Gvozdev A. E., Golyshev I. V., Minayev I. V., Sergeyev A. N., Sergeyev N. N., Tikhonova I. V., Khonelidze D. M., Kolmakov A. G., “Multiparametric optimization of laser cutting of steel sheets”, Inorganic Materials: Applied Research, 6:4 (2015), 305–310 | DOI | MR

[33] Gvozdev A. E., Bogolyubova D. N., Sergeev N. N., Kolmakov A. G., Provotorov D. A., Tikhonova I. V., “Features of softening processes of aluminum, copper, and their alloys under hot deformation”, Inorganic Materials: Applied Research, 6:1 (2015), 32–40 | DOI

[34] Brake A.D., Gvozdev A.E., Kolmakov A.G., “The use of the generalized Pascal triangle to describe the vibrations of the friction force of materials”, Materialovedenie, 2016, no. 11, 3–8

[35] Makarov E.S., Gvozdev A.E., Zhuravlev G.M., et al., “Analysis of plasticity theory equations of powder metal systems”, Chebyshevskii Sbornik, 19:1 (2018), 152–166 | DOI | MR | Zbl

[36] Makarov E.S., Zhuravlev G.M., Gvozdev A.E., et al., “The equations of the plasticity theory properties of dilating materials in the concept of plastic gas”, Chebyshevskii Sbornik, 19:2 (2018), 163–171 | DOI | MR | Zbl

[37] Zhuravlev G.M., Gvozdev A.E., Kolmakov A.G., et al., “Application of mathematical method of local variations to solve problems of plastic formification of metal, powder and nanocomposition materials”, Chebyshevskii Sbornik, 19:4 (2018), 43–54 | DOI | MR | Zbl

[38] Makarov E.S., Gvozdev A.E., Zhuravlev G.M., et al., “Application of plasticity theory of dilating media to sealing processes of powders of metallic systems”, Chebyshevskii Sbornik, 18:4 (2017), 268–284 | DOI | MR

[39] Gvozdev A.E., Zhuravlev G.M., Sapozhnikov S.V., “Theoretical analysis of the process of compacting powder materials by pressing”, Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle, 2017, no. 4, 273–283 | MR

[40] Breki A. D., Aleksandrov S. E., Tyurikov K. S., Kolmakov A. G., Gvozdev A. E., Kalinin A. A., “Antifriction properties of plasma-chemical coatings based on SiO2 with MoS2 nanoparticles under conditions of spinning friction on SHKH15 steel”, Inorganic Materials: Applied Research, 9:4 (2018), 714–718 | DOI