The main notions and theoremes of the geometry of numbers
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 43-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This brief review contents the description of most important concept of geometry or numbers and its main application. It is not included the geometry of quadratic forms — interesting but the special part of a number theory (and a geometry of numbers) standing on joining point of the geometry of numbers and the quadratic forms theory.
Keywords: arithmetical minimum, star body, radial function, covering, lattice, packing.
@article{CHEB_2019_20_3_a3,
     author = {A. V. Malyshev},
     title = {The main notions and theoremes of the geometry of numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {43--73},
     year = {2019},
     volume = {20},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a3/}
}
TY  - JOUR
AU  - A. V. Malyshev
TI  - The main notions and theoremes of the geometry of numbers
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 43
EP  - 73
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a3/
LA  - ru
ID  - CHEB_2019_20_3_a3
ER  - 
%0 Journal Article
%A A. V. Malyshev
%T The main notions and theoremes of the geometry of numbers
%J Čebyševskij sbornik
%D 2019
%P 43-73
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a3/
%G ru
%F CHEB_2019_20_3_a3
A. V. Malyshev. The main notions and theoremes of the geometry of numbers. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 43-73. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a3/

[1] Baranovskii E. P., “Packings, coverings, partitions and some other dispositions in the spaces of fixed curvature”, IN. Algebra. Topology. Geometry, M., 1967, 189–225 ; Избр. труды, Л., 1981, 201–263 | Zbl

[2] Venkov B. A., “On Markov extremal problem for undeterminate ternary forms”, Izv. AN SSSR. Math., 9:6 (1945), 429–494 | Zbl

[3] Vetchinkin N. M., “Uniquness of the classes of positiv quadratic forms, on which it is achieved the values of the Ermit constances for $6\le n\le 8$”, Trudy MIAN, 152, 1980, 34–86 ; No 4, 1938, 102–164 | MR | Zbl

[4] Delone B. N., “The geometry of the positive quadratic forms”, UMN, 1937, no. 3, 16–62 ; 1938, no. 4, 102–164

[5] Delone B. N., The Petersburg school of the numbers theory, M.–P., 1947, 422 pp.

[6] Delone B. N., “On A. A. Markov state «On the binar quadratic forms with the positive determinate»"”, UMN, 3:5(27) (1948), 3–5 | MR | Zbl

[7] Cassels J. W. S., Introduction to the Diophantine approximation theory, M., 1961, 213 pp.

[8] Cassels J. W. S., An Introduction to the geometry of numbers, Mir, M., 1965, 421 pp. | MR

[9] Levenshtane V. I., “On the maximal density of completing of the Euclidean space by equal balls”, Mat. Zametki, 18:2 (1975), 301–311 | MR

[10] Malyshev A. V., “The spectrums of Markov and Lagrange (the literature review)”, Zap. nauch. seminars LOMI, 67, 1977, 5–38 ; 82, 1979, 29–32 | MR | Zbl | Zbl

[11] Malyshev A. V., “On an application of a computer to the proof of the Minkovskii conjecture in the geometry of numbers”, Zap. naych. sem. LOMI, 71, 1977, 163–180 ; 82, 1979, 29–32 ; УМН, 3:5 (27) (1943), 7–51 | MR | Zbl | Zbl

[12] Markov A. A., On the binary qudratic forms with the positive discriminant, SPb, 1880 ; UMN, 3:5 (27) (1943), 7–51

[13] Muhsinov H. H., “The sharpening of the estimates of the arithmetical minimum of the not uniform linear forms production for the big dimensions”, Zap. nauch. sem. LOMI, 106, 1981, 82–103 | Zbl

[14] Muhsinov H. H., “On the Minkovskii not uniform conjecture (the letter to the editorship)”, Zap. naych. sem. LOMI, 121, 1983, 195–196 | Zbl

[15] Narzulaev H. N., “On the representation of the unimodular matrix in the form of $DOTU$ for $n=3$”, Math. zametki, 18:2 (1975), 213–221 | MR

[16] Rodjers K., The packing and the covering, M., 1968, 134 pp.

[17] Ryzskov S. S., Baranovskii E. P., $C$-types of the $n$-dimensional lattices and the 5-dimensional primitive paralleloidres (with the application to the covering theory), Trudy MIAN, 137, M., 1976, 131 pp.

[18] Ryzskov S. S., Baranovskii E. P., “The classical method of the lattice packings theory”, UMN, 34:4(208) (1979), 3–63 | MR | Zbl

[19] Skubenko B. F., “The proof of the Minkovskii conjecture about the production of $n$ linear uniform forms from $n$ arguments for $n\le5$”, Zap. nauch. sem. LOMI, 106, 1981, 134–136 | Zbl

[20] Skubenko B. F., “There are the square real matrix of any degree $n\ge 2880$, which are not $DOTU$-matrix”, Zap. nauch. sem. LOMI, 106, 1981, 134–136 | Zbl

[21] Tammela P., “The estimate of the critical determinant of the 2-dimension convex symmetric region”, Izv. Vuzov, Math., 1970, no. 12(103), 103–107 | MR | Zbl

[22] Feyesh Tot L., The disposition on a plane, on a sphere and in a space, M., 1958, 363 pp.

[23] Bambah R. P., Woods A. C., “Minkowski's conjecture for $n=5$; a theorem of Skubenko”, J. Number Theory, 12 (1980), 27–48 | MR | Zbl

[24] Bantegnie R., “Sur l'indice de certains reseaux de $\mathbb{R}^4$ permis pour octaédre”, Canad. J. Math., 17 (1965), 725–730 | MR | Zbl

[25] Bantegnie R., ““Problème des Oktaédres” en dimension 5”, Acta Arithm., 14:2 (1968), 185–202 | MR | Zbl

[26] Blichfeldt N. F., “The minimum values of positive quadratic forms in six, seven and eight variables”, Math. Z., 39:1 (1934–35), 1–15 | MR

[27] Danicic I., “An elementary proof of Minkowski's second inequality”, J. Austral. Math. Soc., 10:1–2 (1969), 177–181 | MR | Zbl

[28] Godwin N. J., “On the product of five homogeneous linear forms”, J. London Math. Soc., 25:4(100) (1950), 331–339 | MR | Zbl

[29] Gruber P. M., “Geometry of Numbers”, Contributions to geometry, Proc. Geom. Symp. (Siegen, 1978), Basel, 1979, 186–225 | MR | Zbl

[30] Hammer J., Unsolved problems concerning lattice points, London a.o., 1977, vi+101 pp. | MR | Zbl

[31] Hancock H., Development of the Minkowski geometry of numbers, New York, 1939, xxi+839 pp. | MR

[32] Hlawka E., “Über Potenzsummen von Linearformen. I–II”, Sitzungsber. Acad. Wiss. Wien. math.nat. Kl. 11a, 154:1 (1945), 50–58 ; 156:5–6 (1947), 247–254 | MR | Zbl

[33] Hlawka E., “Grundbegriffe der Geometrie der Zahlen”, Jber. Deutsc. Math.-Verein, 57 (1954), 37–55 | MR | Zbl

[34] Keller O. H., Geometrie der Zahlen, Ensycl. math. Wiss., 1, 2, no. 27, Leipzig, 1954, 84 pp. | MR

[35] Koksma J. F., Diofantische Approximationen, Berlin, 1936, viii+157 pp.

[36] Lekkerkerker C. G., Geometry of numbers, Groningen–Amsterdam, 1969, viii+510 pp. | MR | Zbl

[37] Macbeath A. M., Rogers C. A., “Siegel's mean value Theorem in the geometry of numbers”, Proc. Cambridge Philos. Soc., 54 (1958), 139–151 | MR | Zbl

[38] Minkowski H., Geometry der Zahlen, Leipzig–Berlin, 1910, viii+256 pp. | MR | Zbl

[39] Minkowski H., “Dichteste gitterformicge Lagerung kongruenter Korper”, Nach. Koning. Ges. Wiss. Göttingen, 1904, 311–355 ; Ges. Abh., v. 2, Leipzig–Berlin, 1911, 3–42 | Zbl

[40] Minkowski H., Diophantsche Approximationen, Leipzig–Berlin, 1907, viii+235 pp.

[41] Nordzij P., “Über das Product von vier reellen, homogenen, linearen Formen”, Monatsh. Math., 71:5 (1967), 436–445 | MR

[42] Rankin R. A., “On sums of powers of linear forms. I–II–III”, Ann. of Math. (2), 50:3 (1949), 691–704 ; Proc. Kon. Ned. Akad. Wet., 51 (1948), 846–853 ; Indag. math., 10 (1948), 274–281 | MR | MR | Zbl

[43] Rodgers C. A., “The product of $n$ real homogeneous linear forms”, Acta Mathem., 82:1–2 (1950), 185–208 | MR

[44] Rodgers C. A., “Lattice coverings of space: the Minkowski–Hlawka theorem”, Proc. London math. soc. (3), 8 (1958), 447–465 | MR

[45] Schmidt W. M., “Eine Verscharfung des Satzes von Minkowski–Hlawka”, Monatsh. Math., 60, 110–113 | MR | Zbl

[46] Schmidt W. M., “On the Minkowski–Hlawka Theorem”, Illinois J. Math., 7 (1963), 18–23 ; corr.: 714 | MR | Zbl | Zbl

[47] Spohn W. G., “Blichfeld's theorem and simultaneous doiphantine approximations”, Amer. J. Math., 90 (1968), 885–894 | MR | Zbl

[48] Swinnerton-Dayer H. P. F., “Applications of computers to the geometry of numbers”, Comput. Algebra and Number Theory, v. 3, SIAM-AMS Proc., 4, Providence, R.I., 1971, 55–62 | MR

[49] Woods A. C., “The anomaly of convex bodies”, Proc. Cambridge Philos. Soc., 52 (1956), 406–423 | MR | Zbl