The main notions and theoremes of the geometry of numbers
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 43-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

This brief review contents the description of most important concept of geometry or numbers and its main application. It is not included the geometry of quadratic forms — interesting but the special part of a number theory (and a geometry of numbers) standing on joining point of the geometry of numbers and the quadratic forms theory.
Keywords: arithmetical minimum, star body, radial function, covering, lattice, packing.
@article{CHEB_2019_20_3_a3,
     author = {A. V. Malyshev},
     title = {The main notions and theoremes of the geometry of numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {43--73},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a3/}
}
TY  - JOUR
AU  - A. V. Malyshev
TI  - The main notions and theoremes of the geometry of numbers
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 43
EP  - 73
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a3/
LA  - ru
ID  - CHEB_2019_20_3_a3
ER  - 
%0 Journal Article
%A A. V. Malyshev
%T The main notions and theoremes of the geometry of numbers
%J Čebyševskij sbornik
%D 2019
%P 43-73
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a3/
%G ru
%F CHEB_2019_20_3_a3
A. V. Malyshev. The main notions and theoremes of the geometry of numbers. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 43-73. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a3/

[1] Baranovskii E. P., “Packings, coverings, partitions and some other dispositions in the spaces of fixed curvature”, IN. Algebra. Topology. Geometry, M., 1967, 189–225 ; Избр. труды, Л., 1981, 201–263 | Zbl

[2] Venkov B. A., “On Markov extremal problem for undeterminate ternary forms”, Izv. AN SSSR. Math., 9:6 (1945), 429–494 | Zbl

[3] Vetchinkin N. M., “Uniquness of the classes of positiv quadratic forms, on which it is achieved the values of the Ermit constances for $6\le n\le 8$”, Trudy MIAN, 152, 1980, 34–86 ; No 4, 1938, 102–164 | MR | Zbl

[4] Delone B. N., “The geometry of the positive quadratic forms”, UMN, 1937, no. 3, 16–62 ; 1938, no. 4, 102–164

[5] Delone B. N., The Petersburg school of the numbers theory, M.–P., 1947, 422 pp.

[6] Delone B. N., “On A. A. Markov state «On the binar quadratic forms with the positive determinate»"”, UMN, 3:5(27) (1948), 3–5 | MR | Zbl

[7] Cassels J. W. S., Introduction to the Diophantine approximation theory, M., 1961, 213 pp.

[8] Cassels J. W. S., An Introduction to the geometry of numbers, Mir, M., 1965, 421 pp. | MR

[9] Levenshtane V. I., “On the maximal density of completing of the Euclidean space by equal balls”, Mat. Zametki, 18:2 (1975), 301–311 | MR

[10] Malyshev A. V., “The spectrums of Markov and Lagrange (the literature review)”, Zap. nauch. seminars LOMI, 67, 1977, 5–38 ; 82, 1979, 29–32 | MR | Zbl | Zbl

[11] Malyshev A. V., “On an application of a computer to the proof of the Minkovskii conjecture in the geometry of numbers”, Zap. naych. sem. LOMI, 71, 1977, 163–180 ; 82, 1979, 29–32 ; УМН, 3:5 (27) (1943), 7–51 | MR | Zbl | Zbl

[12] Markov A. A., On the binary qudratic forms with the positive discriminant, SPb, 1880 ; UMN, 3:5 (27) (1943), 7–51

[13] Muhsinov H. H., “The sharpening of the estimates of the arithmetical minimum of the not uniform linear forms production for the big dimensions”, Zap. nauch. sem. LOMI, 106, 1981, 82–103 | Zbl

[14] Muhsinov H. H., “On the Minkovskii not uniform conjecture (the letter to the editorship)”, Zap. naych. sem. LOMI, 121, 1983, 195–196 | Zbl

[15] Narzulaev H. N., “On the representation of the unimodular matrix in the form of $DOTU$ for $n=3$”, Math. zametki, 18:2 (1975), 213–221 | MR

[16] Rodjers K., The packing and the covering, M., 1968, 134 pp.

[17] Ryzskov S. S., Baranovskii E. P., $C$-types of the $n$-dimensional lattices and the 5-dimensional primitive paralleloidres (with the application to the covering theory), Trudy MIAN, 137, M., 1976, 131 pp.

[18] Ryzskov S. S., Baranovskii E. P., “The classical method of the lattice packings theory”, UMN, 34:4(208) (1979), 3–63 | MR | Zbl

[19] Skubenko B. F., “The proof of the Minkovskii conjecture about the production of $n$ linear uniform forms from $n$ arguments for $n\le5$”, Zap. nauch. sem. LOMI, 106, 1981, 134–136 | Zbl

[20] Skubenko B. F., “There are the square real matrix of any degree $n\ge 2880$, which are not $DOTU$-matrix”, Zap. nauch. sem. LOMI, 106, 1981, 134–136 | Zbl

[21] Tammela P., “The estimate of the critical determinant of the 2-dimension convex symmetric region”, Izv. Vuzov, Math., 1970, no. 12(103), 103–107 | MR | Zbl

[22] Feyesh Tot L., The disposition on a plane, on a sphere and in a space, M., 1958, 363 pp.

[23] Bambah R. P., Woods A. C., “Minkowski's conjecture for $n=5$; a theorem of Skubenko”, J. Number Theory, 12 (1980), 27–48 | MR | Zbl

[24] Bantegnie R., “Sur l'indice de certains reseaux de $\mathbb{R}^4$ permis pour octaédre”, Canad. J. Math., 17 (1965), 725–730 | MR | Zbl

[25] Bantegnie R., ““Problème des Oktaédres” en dimension 5”, Acta Arithm., 14:2 (1968), 185–202 | MR | Zbl

[26] Blichfeldt N. F., “The minimum values of positive quadratic forms in six, seven and eight variables”, Math. Z., 39:1 (1934–35), 1–15 | MR

[27] Danicic I., “An elementary proof of Minkowski's second inequality”, J. Austral. Math. Soc., 10:1–2 (1969), 177–181 | MR | Zbl

[28] Godwin N. J., “On the product of five homogeneous linear forms”, J. London Math. Soc., 25:4(100) (1950), 331–339 | MR | Zbl

[29] Gruber P. M., “Geometry of Numbers”, Contributions to geometry, Proc. Geom. Symp. (Siegen, 1978), Basel, 1979, 186–225 | MR | Zbl

[30] Hammer J., Unsolved problems concerning lattice points, London a.o., 1977, vi+101 pp. | MR | Zbl

[31] Hancock H., Development of the Minkowski geometry of numbers, New York, 1939, xxi+839 pp. | MR

[32] Hlawka E., “Über Potenzsummen von Linearformen. I–II”, Sitzungsber. Acad. Wiss. Wien. math.nat. Kl. 11a, 154:1 (1945), 50–58 ; 156:5–6 (1947), 247–254 | MR | Zbl

[33] Hlawka E., “Grundbegriffe der Geometrie der Zahlen”, Jber. Deutsc. Math.-Verein, 57 (1954), 37–55 | MR | Zbl

[34] Keller O. H., Geometrie der Zahlen, Ensycl. math. Wiss., 1, 2, no. 27, Leipzig, 1954, 84 pp. | MR

[35] Koksma J. F., Diofantische Approximationen, Berlin, 1936, viii+157 pp.

[36] Lekkerkerker C. G., Geometry of numbers, Groningen–Amsterdam, 1969, viii+510 pp. | MR | Zbl

[37] Macbeath A. M., Rogers C. A., “Siegel's mean value Theorem in the geometry of numbers”, Proc. Cambridge Philos. Soc., 54 (1958), 139–151 | MR | Zbl

[38] Minkowski H., Geometry der Zahlen, Leipzig–Berlin, 1910, viii+256 pp. | MR | Zbl

[39] Minkowski H., “Dichteste gitterformicge Lagerung kongruenter Korper”, Nach. Koning. Ges. Wiss. Göttingen, 1904, 311–355 ; Ges. Abh., v. 2, Leipzig–Berlin, 1911, 3–42 | Zbl

[40] Minkowski H., Diophantsche Approximationen, Leipzig–Berlin, 1907, viii+235 pp.

[41] Nordzij P., “Über das Product von vier reellen, homogenen, linearen Formen”, Monatsh. Math., 71:5 (1967), 436–445 | MR

[42] Rankin R. A., “On sums of powers of linear forms. I–II–III”, Ann. of Math. (2), 50:3 (1949), 691–704 ; Proc. Kon. Ned. Akad. Wet., 51 (1948), 846–853 ; Indag. math., 10 (1948), 274–281 | MR | MR | Zbl

[43] Rodgers C. A., “The product of $n$ real homogeneous linear forms”, Acta Mathem., 82:1–2 (1950), 185–208 | MR

[44] Rodgers C. A., “Lattice coverings of space: the Minkowski–Hlawka theorem”, Proc. London math. soc. (3), 8 (1958), 447–465 | MR

[45] Schmidt W. M., “Eine Verscharfung des Satzes von Minkowski–Hlawka”, Monatsh. Math., 60, 110–113 | MR | Zbl

[46] Schmidt W. M., “On the Minkowski–Hlawka Theorem”, Illinois J. Math., 7 (1963), 18–23 ; corr.: 714 | MR | Zbl | Zbl

[47] Spohn W. G., “Blichfeld's theorem and simultaneous doiphantine approximations”, Amer. J. Math., 90 (1968), 885–894 | MR | Zbl

[48] Swinnerton-Dayer H. P. F., “Applications of computers to the geometry of numbers”, Comput. Algebra and Number Theory, v. 3, SIAM-AMS Proc., 4, Providence, R.I., 1971, 55–62 | MR

[49] Woods A. C., “The anomaly of convex bodies”, Proc. Cambridge Philos. Soc., 52 (1956), 406–423 | MR | Zbl