The role of mathematics in the development of composite materials mechanics
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 430-436.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a brief overview of the history of new branches of mathematics and their impact on theoretical studies of mechanics of composite materials. The contribution of Russian and Soviet mathematicians and mechanics is shown, which allowed to create a functional basis for the study of mechanical properties of composites — new materials that have been widely used in engineering and the national economy. Composite materials were created in the second half of the twentieth century. They are multicomponent structures composed of various homogeneous materials. The most common are two-component structures of matrix and filler. Technologically, these components can constitute deterministic or random structures. By changing the structure and properties of the components, it is possible to obtain materials with predetermined macroscopic properties (effective properties) necessary for a particular application. The emergence of composite materials has caused a rapid growth of research on mechanical properties, allowing the design of these materials. These studies were conducted in both theoretical and practical terms. Theoretical studies were mainly reduced to the construction of mathematical models of the mechanical behavior of composites as structurally inhomogeneous materials.
Keywords: history of development, new branches of mathematics, composite materials mechanics.
@article{CHEB_2019_20_3_a29,
     author = {I. K. Arkhipov and V. I. Abramova and A. E. Gvozdev and D. V. Malii},
     title = {The role of mathematics in the development of composite materials mechanics},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {430--436},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a29/}
}
TY  - JOUR
AU  - I. K. Arkhipov
AU  - V. I. Abramova
AU  - A. E. Gvozdev
AU  - D. V. Malii
TI  - The role of mathematics in the development of composite materials mechanics
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 430
EP  - 436
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a29/
LA  - ru
ID  - CHEB_2019_20_3_a29
ER  - 
%0 Journal Article
%A I. K. Arkhipov
%A V. I. Abramova
%A A. E. Gvozdev
%A D. V. Malii
%T The role of mathematics in the development of composite materials mechanics
%J Čebyševskij sbornik
%D 2019
%P 430-436
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a29/
%G ru
%F CHEB_2019_20_3_a29
I. K. Arkhipov; V. I. Abramova; A. E. Gvozdev; D. V. Malii. The role of mathematics in the development of composite materials mechanics. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 430-436. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a29/

[1] Lomakin V. A., Statistical problems in mechanics of deformable bodies, Nauka, M., 1970, 138 pp.

[2] Bolotin V. V., Application of methods of probability theory and reliability theory in construction calculations, Stroizdat, M., 1971, 255 pp.

[3] Bolotin V. V., Moskalenko V. N., “On the calculation of macroscopic constants of strongly isotropic composite materials”, Izvestiya Akademii nauk SSSR. Mekhanika tverdogo tela, 1969, no. 3, 108 pp.

[4] Shermergor T. D., Theory of elasticity of micro-homogeneous media, Nauka, M., 1977, 399 pp.

[5] Khoroshun L. P., “Refined models of deformation of composites”, Mechanics of composite materials, 1984, no. 5, 798–804

[6] Khoroshun L. P., “Methods of the theory of random functions in problems of macroscopic properties of micro-homogeneous media”, Applied mechanics, 14:2 (1978), 3–17 | MR | Zbl

[7] Cherepanov G. P., Fracture Mechanics of composite materials, Nauka, M., 1983, 295 pp.

[8] Tamuzh V. P., Kuksenko V. S., Micromechanics of polymer materials destruction, Zinatne, Riga, 1978, 294 pp.

[9] Makarov E. S., Gvozdev A. E., Zhuravlev G. M. et al., “Application of the theory of plasticity of dilating media to the processes of compaction of powders of metal systems”, Chebyshevskii Sbornik, 18:4 (2017), 268–284 | DOI | MR

[10] Makarov E. S., Gvozdev A. E., Zhuravlev G. M. et al., “Analysis of the equations of the theory of plasticity of powder metal systems”, Chebyshevskii Sbornik, 19:1 (2018), 152–166 | DOI | MR | Zbl

[11] Zhuravlev G. M., Gvozdev A. E., Kolmakov A. G., et al., “Application of the mathematical method of local variations for solving problems of plastic shaping of metal, powder and nanocomposite materials”, Chebyshevskii Sbornik, 19:4 (2018), 43–54 | DOI | MR | Zbl

[12] Gvozdev A. E., Bogolyubova D. N., Sergeev N. N., Kolmakov A. G., Provotorov D. A., Tikhonova I. V., “Features of softening processes of aluminum, copper, and their alloys under hot deformation”, Inorganic Materials: Applied Research, 6:1 (2015), 32–40

[13] Gvozdev A. E., Zhuravlev G. M., Kuzovlev O. V., Fundamentals of formation of the state of high deformation ability of metal systems, TulGU, Tula, 2018, 382 pp.

[14] Beran M., Statistical Continuum Theories, Inter. Publ., New York, 1968 | Zbl

[15] Hill R., “A self-consistent mechanics of composite materials”, J. Mech. Phys. Solids, 13:4 (1968), 213–222

[16] Kröner E., Kontinuumstheorie der Versetzungen und Eigenspannungen, Springer-Verlag, Berlin, 1958 | MR | Zbl

[17] Kröner E., “Elastostatik statistisch aufgebauter Körper”, ZAMM, 55:4 (1975), 39–43

[18] Yeh R. H. T., “Variational principles for linear anisotropic composites”, Physics, 58 (1972), 419