Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_3_a28, author = {Yu. A. Basalov}, title = {Estimations of the constant of the best simultaneous {Diophanite} approximations}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {405--429}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a28/} }
Yu. A. Basalov. Estimations of the constant of the best simultaneous Diophanite approximations. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 405-429. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a28/
[1] Adams W. W., “Simultaneous Diophantine approximations and cubic irrationals”, Pacific journal of mathematics, 30:1 (1969), 1–14 | MR | Zbl
[2] Adams W. W., “The best two-dimensional diophanite approximation constant for cubic irrtionals”, Pacific journal of mathematics, 91:1 (1980), 29–30 | MR
[3] Bernstein L., “A 3-Dimensional Periodic Jacobi-Perron Algorithm of Period Length 8”, Journal of Number Theory, 4:1 (1972), 48–69 | MR | Zbl
[4] Blichfeldt H., “A new principle in the geometry of numbers, with some applications”, Trans. Amer. Math. Soc., 15 (1914), 227–235 | MR | Zbl
[5] Cassels J. W. S., “Simultaneous Diophantine approximation”, J. London Math. Soc., 30 (1955), 119–121 | MR | Zbl
[6] Cusick T. W., “Estimates for Diophantine approximation constants”, Journal of Number Theory, 12:4 (1980), 543–556 | MR | Zbl
[7] Cusick J. W., “The two dimensional diophanite approximation constant”, Pacific journal of mathematics, 105:1 (1983), 53–67 | MR | Zbl
[8] Davenport H., “On a theorem of Furtwängler”, J. London Math. Soc., 30 (1955), 186–195 | MR | Zbl
[9] Dirichlet L. G. P., “Verallgemeinerung eines Satzes aus der Lehre von den Kettenbruchen nebst einigen Anwendungen auf die Theorie der Zahlen”, S. B. Preuss. Akad. Wiss., 1842, 93–95
[10] Euler L., “De relatione inter ternas pluresve quantitates instituenda”, Commentationes arithmeticae collectae, Petersburger Akademie Notiz. Exhib. (August 14, 1775), v. II, St. Petersburg, 1849, 99–104
[11] Finch S. R., Mathematical Constants, Encyclopedia of Mathematics and its Applications, 94, Cambridge University Press, 2003 | MR | Zbl
[12] Fujita H., “The minimum discriminant of totally real algebraic fields of degree 9 with cubic subfields”, Mathematics of Computation, 60:202 (1993), 801–810 | MR | Zbl
[13] Furtwängler H., “Über die simulatene Approximation von Irrationalzahlen. I”, Math. Ann., 96 (1927), 169–175 | MR
[14] Furtwängler H., “Über die simulatene Approximation von Irrationalzahlen. II”, Math. Ann., 99 (1928), 71–83 | MR | Zbl
[15] Hunter J., “The minimum discriminant of quintic fields”, Proc. Glasgow Math. Assoc., 3 (1957), 57–67 | MR | Zbl
[16] Hurwitz A., “Über die angenaherte Darstellung der Irrationalzahlen durch rationaleBriiche”, Math. Ann., 39 (1891), 279–284 | MR
[17] Jacobi C. G. J., “Allgemeine Theorie der Kettenbruchanlichen Algorithmen, in welchenjede Zahl aus drei vorhergehenden gebildet wird”, J. Reine Angew. Math., 69 (1868), 29–64 ; Gesammelte Werke, v. IV, Reimer, Berlin, 1891, 385–426 | MR
[18] Klüners J., Malle G., “A Database for Field Extensions of the Rationals”, LMS Journal of Computation and Mathematics, 4 (2001), 182–196 | MR | Zbl
[19] Koksma J., Meulenbeld B., “Sur le theoreme de Minkowski, concernant un systeme de formes lineaires reelles. I, II, III, IV”, Kon. Nederl. Akad. Wetensch. Proc. Sect. Sci., 45 (1942), 256–262 ; 354–359 ; 471–478 ; 578–584 | MR | MR | MR | MR
[20] Krass S., “Estimates for $n$-dimensional Diophantine approximation constants for $ n \geq 4 $”, J. Number Theory, 20:2 (1985), 172–176 | MR | Zbl
[21] Krass S., “The $N$-dimensional diophantine approximation constants”, Australian Mathematical Society, 32:2 (1985), 313–316 | MR | Zbl
[22] Lanker M., Petek P., Rugeji M. S., The continued fractions ladder of specific pairs of irrationals, 2011, arXiv: (data obrascheniya: 10.04.2019) 1108.0087
[23] Mack J. M., “Simultaneous Diophantine approximation”, J. Austral. Math. Soc. A, 24 (1977), 266–285 | MR | Zbl
[24] Mayer J., “Die absolut-kleinsten Diskriminanten der biquadratischen Zahlkorper”, S.-B. Akad. Wiss. Wien Abt. Ila, 138 (1929), 733–742 | Zbl
[25] Minkovski H., Geometrie der Zahlen, Teubner, Berlin, 1896 | MR
[26] Mordell L., “Lattice points in some n-dimensional non-convex regions. I, II”, Kon. Nederl. Akad. Wetensch. Proc. Sect. Sci., 49 (1946), 773–781 ; 782–792 | MR | Zbl
[27] Mullender P., “Lattice points in non-convex regions. I”, Kon. Nederl. Akad. Wetensch. Proc. Sect. Sci., 51 (1948), 874–884 | MR | Zbl
[28] Murru N., On the Hermite problem for cubic irrationaliti, 2014, arXiv: (data obrascheniya: 10.04.2019) 1305.3285
[29] Nowak W. G., “A note on simultaneous Diophantine approximation”, Manuscr. Math., 36 (1981), 33–46 | MR | Zbl
[30] Nowak W. G., “A remark concerning the s-dimensional simultaneous Diophantine approximation constants”, Graz. Math. Ber., 318 (1993), 105–110 | MR | Zbl
[31] Nowak W. G., “Lower bounds for simultaneous Diophantine approximation constants.”, Comm. Math., 22:1 (2014), 71–76 | MR | Zbl
[32] Nowak W. G., “Simultaneous Diophantine approximation: Searching for analogues of Hurwitz's theorem”, Essays in mathematics and its applications, eds. T.M. Rassias, P. M. Pardalos, Springer, Switzerland, 2016, 181–197 | MR | Zbl
[33] Odlyzko A. M., “Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results”, Journal de Théorie des Nombres de Bordeaux, 2:1 (1990), 119–141 | MR | Zbl
[34] Perron O., “Grundlagen fur eine Theorie des Jacobischen Ketten-bruchalgorithmus”, Math. Ann., 64 (1907), 1–76 | MR | Zbl
[35] Spohn W. G., “Blichfeldt's theorem and simultaneous Diophantine approximation”, Amer. J. Math., 90 (1968), 885–894 | MR | Zbl
[36] Szekers G., “The $n$-dimensional approximation constant”, Bull. Austral. Math. Soc., 29 (1984), 119–125 | MR
[37] Woods A. C., “The asymetric product of three homogenous linear forms”, Pacific J. Math., 93 (1981), 237–250 | MR | Zbl
[38] Bruno A. D., “Algorithm of the generalizationued continued fraction”, Keldysh Institute preprints, 2004, 045, 27 pp.
[39] Bruno A. D., “The structure of best Diophantine approximations”, Proceedings FAS, 2005
[40] Bruno A. D., “Algorithm of the generalized continued fractions”, Proceedings FAS, 2005
[41] Cassels J. W. S., An Introduction to the Geometry of Numbers, Mir, 1965 | MR
[42] Moshchevitin N. G., “To the Blichfeldt-Mullender-Spohn theorem on simultaneous approximations”, Proceedings of the Steklov Mathematical Institute, 239, 2002, 268–274
[43] Prasolov V. V., Polynomials, MCNMO, 2001
[44] Hinchin A. Ya., Continued fractions, Mir, 1961
[45] Schmidt W. M., Diophantine Approximation, Mir, 1983 | MR
[46] A Database for Number Fields, (data obrascheniya: 05.05.2018) http://galoisdb.math.upb.de/
[47] Basalov Yu. A., “Geometric interpretation of the problem of the best Diophantine approximations”, V All-Russian Scientific and Practical Conference of faculty, graduate students, undergraduates, applicants TSPU of Leo Tolstoy “University of the XXI century: research in the framework of scientific schools”, 2015
[48] Basalov Yu. A., “On the best approximations of cubic irrationality”, All-Russian Scientific and Practical Conference “University of the XXI Century: Scientific Dimension”, 2016
[49] Rebrova I. Yu., Dobrovolsky N. M., Dobrovolsky N. N., Balaba I. N., Yesayan A. R., Basalov Yu. A., Basalova A. N., Lyamin M. I., Rodionov A. V., The number-theoretic method in approximate analysis and its implementation in POIVS "TMK"-II, Publishing house of TSPU of Leo Tolstoy, 2017 | MR
[50] Basalov Yu. A., “Computer modeling and partial quotients of cubic irrationality”, IV international conference “Multiscale modeling of structures, structure of matter, nanomaterials and nanotechnology”, 2017, 97–100
[51] Basalov Yu. A., On estimating the constant of simultaneous Diophantine approximation, 2019, arXiv: (data obrascheniya: 10.04.2019) 1804.05385
[52] Basalov Yu. A., “Ob otsenke konstanty nailuchshikh diofantovykh priblizhenii dlya $n > 4$”, XV Mezhdunarodnaya konferentsiya Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy i prilozheniya, posvyaschennaya stoletiyu so dnya rozhdeniya professora Korobova Nikolaya Mikhailovicha, 2018, 245–248
[53] Basalov Yu. A., “On the history of estimates of the constant of the best joint diophantine approximations”, Chebyshevskii sbornik, 19:2 (2018), 388–405 | DOI
[54] Basalov Yu. A., “On methods for lower estimation of the constant of diophantine approximations”, Materials of the International Youth Scientific Forum “LOMONOSOV-2019”, 2019
[55] Basalov Yu. A., “On methods for estimating critical determinants”, Algebra, number theory and discrete geometry: modern problems, applications and problems of history, Materials of the XVI Intern. Conf., Dedicated to the 80th birthday of Professor Michel Deza, 2019, 227–228
[56] Basalov Yu. A., “Estimation of the constant of the best simultaneous Diophanite approximations for $n=5$ and $n=6$”, Chebyshevskii sbornik, 20:1 (2019), 66–81 | DOI | MR | Zbl