Estimations of the constant of the best simultaneous Diophanite approximations
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 405-429.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the development of a new approach for estimating from below the constant of the best Diophantine approximations. The history of this problem dates back to P. G. Dirichlet. Over time, the approaches used to solve this problem have undergone major changes. From algebra (P. G. Dirichlet, A. Hurwitz, F. Furtwengler) this problem has moved into the field geometry of numbers (H. Davenport, J. W. S. Cassels). One cannot fail to note such an interesting component of this problem as the close relationship of diophantine approximations with geometry of numbers in general, and algebraic lattices in particular (J. W. S. Cassels, A. D. Bruno). This provided new opportunities, both for applying the already known results and for application of new approaches to the problem of the best Diophantine approximations (A. D. Bruno, N. G. Moshchevitin). In the mid-twentieth century, H. Davenport found a fundamental relationship between the value of the constant of the best joint Diophantine approximations and critical determinant of a stellar body of a special kind. Later, J. W. S. Cassels went from directly calculating the critical determinant to estimating its value by calculating the largest value of $ V_{n, s} $ – the volume of the parallelepiped centered at the origin with certain properties. This approach allowed us to obtain estimates of the constant of the best joint Diophantine approximations for $ n = 2, 3, 4 $ (see the works of J. W. S. Kassels, T. Cusick, S. Krass). In this paper, based on the approach described above, the estimates $ n = 5 $ and $ n = 6 $ are obtained. The idea of constructing estimates differs from the work of T. Cusick. Using numerical experiments, approximate and then exact values of the estimates $ V_ {n, s} $ were obtained. The proof of these estimates is rather cumbersome and is primarily of technical complexity. Another difference between constant estimates is the ability to generalize them to any dimension. As part of the proof of estimates of the constant of the best Diophantine approximations, we have solved a number of multidimensional optimization problems. In solving them, we used the mathematical package {\ttfamily Wolfram Mathematica} quite actively. These results are an intermediate step for analytical proofs of the estimates of $ V_{n, s} $ and the constant of the best Diophantine approximations $ C_n $ for $ n \geq 3 $. In the process of numerical experiments, interesting information was also obtained on the structure of the values of $ V_{n, s} $. These results are in good agreement with the results obtained in the works of S. Krass. The question of the structure of the values of $ V_{n, s} $ for large dimensions has been little studied and can be of considerable interest both from the point of geometry of numbers and from the point of theory of diophantine approximations.
Keywords: best joint Diophantine approximations, geometry of numbers, star bodies, critical determinants.
@article{CHEB_2019_20_3_a28,
     author = {Yu. A. Basalov},
     title = {Estimations of the constant of the best simultaneous {Diophanite} approximations},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {405--429},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a28/}
}
TY  - JOUR
AU  - Yu. A. Basalov
TI  - Estimations of the constant of the best simultaneous Diophanite approximations
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 405
EP  - 429
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a28/
LA  - ru
ID  - CHEB_2019_20_3_a28
ER  - 
%0 Journal Article
%A Yu. A. Basalov
%T Estimations of the constant of the best simultaneous Diophanite approximations
%J Čebyševskij sbornik
%D 2019
%P 405-429
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a28/
%G ru
%F CHEB_2019_20_3_a28
Yu. A. Basalov. Estimations of the constant of the best simultaneous Diophanite approximations. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 405-429. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a28/

[1] Adams W. W., “Simultaneous Diophantine approximations and cubic irrationals”, Pacific journal of mathematics, 30:1 (1969), 1–14 | MR | Zbl

[2] Adams W. W., “The best two-dimensional diophanite approximation constant for cubic irrtionals”, Pacific journal of mathematics, 91:1 (1980), 29–30 | MR

[3] Bernstein L., “A 3-Dimensional Periodic Jacobi-Perron Algorithm of Period Length 8”, Journal of Number Theory, 4:1 (1972), 48–69 | MR | Zbl

[4] Blichfeldt H., “A new principle in the geometry of numbers, with some applications”, Trans. Amer. Math. Soc., 15 (1914), 227–235 | MR | Zbl

[5] Cassels J. W. S., “Simultaneous Diophantine approximation”, J. London Math. Soc., 30 (1955), 119–121 | MR | Zbl

[6] Cusick T. W., “Estimates for Diophantine approximation constants”, Journal of Number Theory, 12:4 (1980), 543–556 | MR | Zbl

[7] Cusick J. W., “The two dimensional diophanite approximation constant”, Pacific journal of mathematics, 105:1 (1983), 53–67 | MR | Zbl

[8] Davenport H., “On a theorem of Furtwängler”, J. London Math. Soc., 30 (1955), 186–195 | MR | Zbl

[9] Dirichlet L. G. P., “Verallgemeinerung eines Satzes aus der Lehre von den Kettenbruchen nebst einigen Anwendungen auf die Theorie der Zahlen”, S. B. Preuss. Akad. Wiss., 1842, 93–95

[10] Euler L., “De relatione inter ternas pluresve quantitates instituenda”, Commentationes arithmeticae collectae, Petersburger Akademie Notiz. Exhib. (August 14, 1775), v. II, St. Petersburg, 1849, 99–104

[11] Finch S. R., Mathematical Constants, Encyclopedia of Mathematics and its Applications, 94, Cambridge University Press, 2003 | MR | Zbl

[12] Fujita H., “The minimum discriminant of totally real algebraic fields of degree 9 with cubic subfields”, Mathematics of Computation, 60:202 (1993), 801–810 | MR | Zbl

[13] Furtwängler H., “Über die simulatene Approximation von Irrationalzahlen. I”, Math. Ann., 96 (1927), 169–175 | MR

[14] Furtwängler H., “Über die simulatene Approximation von Irrationalzahlen. II”, Math. Ann., 99 (1928), 71–83 | MR | Zbl

[15] Hunter J., “The minimum discriminant of quintic fields”, Proc. Glasgow Math. Assoc., 3 (1957), 57–67 | MR | Zbl

[16] Hurwitz A., “Über die angenaherte Darstellung der Irrationalzahlen durch rationaleBriiche”, Math. Ann., 39 (1891), 279–284 | MR

[17] Jacobi C. G. J., “Allgemeine Theorie der Kettenbruchanlichen Algorithmen, in welchenjede Zahl aus drei vorhergehenden gebildet wird”, J. Reine Angew. Math., 69 (1868), 29–64 ; Gesammelte Werke, v. IV, Reimer, Berlin, 1891, 385–426 | MR

[18] Klüners J., Malle G., “A Database for Field Extensions of the Rationals”, LMS Journal of Computation and Mathematics, 4 (2001), 182–196 | MR | Zbl

[19] Koksma J., Meulenbeld B., “Sur le theoreme de Minkowski, concernant un systeme de formes lineaires reelles. I, II, III, IV”, Kon. Nederl. Akad. Wetensch. Proc. Sect. Sci., 45 (1942), 256–262 ; 354–359 ; 471–478 ; 578–584 | MR | MR | MR | MR

[20] Krass S., “Estimates for $n$-dimensional Diophantine approximation constants for $ n \geq 4 $”, J. Number Theory, 20:2 (1985), 172–176 | MR | Zbl

[21] Krass S., “The $N$-dimensional diophantine approximation constants”, Australian Mathematical Society, 32:2 (1985), 313–316 | MR | Zbl

[22] Lanker M., Petek P., Rugeji M. S., The continued fractions ladder of specific pairs of irrationals, 2011, arXiv: (data obrascheniya: 10.04.2019) 1108.0087

[23] Mack J. M., “Simultaneous Diophantine approximation”, J. Austral. Math. Soc. A, 24 (1977), 266–285 | MR | Zbl

[24] Mayer J., “Die absolut-kleinsten Diskriminanten der biquadratischen Zahlkorper”, S.-B. Akad. Wiss. Wien Abt. Ila, 138 (1929), 733–742 | Zbl

[25] Minkovski H., Geometrie der Zahlen, Teubner, Berlin, 1896 | MR

[26] Mordell L., “Lattice points in some n-dimensional non-convex regions. I, II”, Kon. Nederl. Akad. Wetensch. Proc. Sect. Sci., 49 (1946), 773–781 ; 782–792 | MR | Zbl

[27] Mullender P., “Lattice points in non-convex regions. I”, Kon. Nederl. Akad. Wetensch. Proc. Sect. Sci., 51 (1948), 874–884 | MR | Zbl

[28] Murru N., On the Hermite problem for cubic irrationaliti, 2014, arXiv: (data obrascheniya: 10.04.2019) 1305.3285

[29] Nowak W. G., “A note on simultaneous Diophantine approximation”, Manuscr. Math., 36 (1981), 33–46 | MR | Zbl

[30] Nowak W. G., “A remark concerning the s-dimensional simultaneous Diophantine approximation constants”, Graz. Math. Ber., 318 (1993), 105–110 | MR | Zbl

[31] Nowak W. G., “Lower bounds for simultaneous Diophantine approximation constants.”, Comm. Math., 22:1 (2014), 71–76 | MR | Zbl

[32] Nowak W. G., “Simultaneous Diophantine approximation: Searching for analogues of Hurwitz's theorem”, Essays in mathematics and its applications, eds. T.M. Rassias, P. M. Pardalos, Springer, Switzerland, 2016, 181–197 | MR | Zbl

[33] Odlyzko A. M., “Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results”, Journal de Théorie des Nombres de Bordeaux, 2:1 (1990), 119–141 | MR | Zbl

[34] Perron O., “Grundlagen fur eine Theorie des Jacobischen Ketten-bruchalgorithmus”, Math. Ann., 64 (1907), 1–76 | MR | Zbl

[35] Spohn W. G., “Blichfeldt's theorem and simultaneous Diophantine approximation”, Amer. J. Math., 90 (1968), 885–894 | MR | Zbl

[36] Szekers G., “The $n$-dimensional approximation constant”, Bull. Austral. Math. Soc., 29 (1984), 119–125 | MR

[37] Woods A. C., “The asymetric product of three homogenous linear forms”, Pacific J. Math., 93 (1981), 237–250 | MR | Zbl

[38] Bruno A. D., “Algorithm of the generalizationued continued fraction”, Keldysh Institute preprints, 2004, 045, 27 pp.

[39] Bruno A. D., “The structure of best Diophantine approximations”, Proceedings FAS, 2005

[40] Bruno A. D., “Algorithm of the generalized continued fractions”, Proceedings FAS, 2005

[41] Cassels J. W. S., An Introduction to the Geometry of Numbers, Mir, 1965 | MR

[42] Moshchevitin N. G., “To the Blichfeldt-Mullender-Spohn theorem on simultaneous approximations”, Proceedings of the Steklov Mathematical Institute, 239, 2002, 268–274

[43] Prasolov V. V., Polynomials, MCNMO, 2001

[44] Hinchin A. Ya., Continued fractions, Mir, 1961

[45] Schmidt W. M., Diophantine Approximation, Mir, 1983 | MR

[46] A Database for Number Fields, (data obrascheniya: 05.05.2018) http://galoisdb.math.upb.de/

[47] Basalov Yu. A., “Geometric interpretation of the problem of the best Diophantine approximations”, V All-Russian Scientific and Practical Conference of faculty, graduate students, undergraduates, applicants TSPU of Leo Tolstoy “University of the XXI century: research in the framework of scientific schools”, 2015

[48] Basalov Yu. A., “On the best approximations of cubic irrationality”, All-Russian Scientific and Practical Conference “University of the XXI Century: Scientific Dimension”, 2016

[49] Rebrova I. Yu., Dobrovolsky N. M., Dobrovolsky N. N., Balaba I. N., Yesayan A. R., Basalov Yu. A., Basalova A. N., Lyamin M. I., Rodionov A. V., The number-theoretic method in approximate analysis and its implementation in POIVS "TMK"-II, Publishing house of TSPU of Leo Tolstoy, 2017 | MR

[50] Basalov Yu. A., “Computer modeling and partial quotients of cubic irrationality”, IV international conference “Multiscale modeling of structures, structure of matter, nanomaterials and nanotechnology”, 2017, 97–100

[51] Basalov Yu. A., On estimating the constant of simultaneous Diophantine approximation, 2019, arXiv: (data obrascheniya: 10.04.2019) 1804.05385

[52] Basalov Yu. A., “Ob otsenke konstanty nailuchshikh diofantovykh priblizhenii dlya $n > 4$”, XV Mezhdunarodnaya konferentsiya Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy i prilozheniya, posvyaschennaya stoletiyu so dnya rozhdeniya professora Korobova Nikolaya Mikhailovicha, 2018, 245–248

[53] Basalov Yu. A., “On the history of estimates of the constant of the best joint diophantine approximations”, Chebyshevskii sbornik, 19:2 (2018), 388–405 | DOI

[54] Basalov Yu. A., “On methods for lower estimation of the constant of diophantine approximations”, Materials of the International Youth Scientific Forum “LOMONOSOV-2019”, 2019

[55] Basalov Yu. A., “On methods for estimating critical determinants”, Algebra, number theory and discrete geometry: modern problems, applications and problems of history, Materials of the XVI Intern. Conf., Dedicated to the 80th birthday of Professor Michel Deza, 2019, 227–228

[56] Basalov Yu. A., “Estimation of the constant of the best simultaneous Diophanite approximations for $n=5$ and $n=6$”, Chebyshevskii sbornik, 20:1 (2019), 66–81 | DOI | MR | Zbl