On a property of nilpotent matrices over an algebraically closed field
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 401-404.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $F$ is an algebraically closed field. We prove that the ring $\prod_{n=1}^\infty \mathbb M_n(F)$ has a special property which is, somewhat, in sharp parallel with (and slightly better than) a property established by Šter (LAA, 2018) for the rings $\prod_{n=1}^\infty \mathbb M_n(\mathbb Z_2)$ and $\prod_{n=1}^\infty \mathbb M_n(\mathbb Z_4)$, where $\mathbb Z_2$ is the finite simple field of two elements and $\mathbb Z_4$ is the finite indecomposable ring of four elements.
Keywords: nilpotent matrices, idempotent matrices, Jordan canonical form, algebraically closed fields.
@article{CHEB_2019_20_3_a27,
     author = {P. V. Danchev},
     title = {On a property of nilpotent matrices over an algebraically closed field},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {401--404},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a27/}
}
TY  - JOUR
AU  - P. V. Danchev
TI  - On a property of nilpotent matrices over an algebraically closed field
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 401
EP  - 404
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a27/
LA  - en
ID  - CHEB_2019_20_3_a27
ER  - 
%0 Journal Article
%A P. V. Danchev
%T On a property of nilpotent matrices over an algebraically closed field
%J Čebyševskij sbornik
%D 2019
%P 401-404
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a27/
%G en
%F CHEB_2019_20_3_a27
P. V. Danchev. On a property of nilpotent matrices over an algebraically closed field. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 401-404. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a27/

[1] S. Breaz, G. Cǎlugǎreanu, P. Danchev, T. Micu, “Nil-clean matrix rings”, Lin. Alg. Appl., 439 (2013), 3115–3119 | MR | Zbl

[2] P.V. Danchev, “A generalization of $\pi$-regular rings”, Turk. J. Math., 43 (2019), 702–711 | MR | Zbl

[3] K. C. O'Meara, J. Clark, C. I. Vinsonhaler, Advanced Topics in Linear Algebra: weaving matrix problems through the Weyr form, Oxford Univ. Press, 2011 | MR | Zbl

[4] J. Šter, “On expressing matrices over $\mathbb Z_2$ as the sum of an idempotent and a nilpotent”, Lin. Alg. Appl., 544 (2018), 339–349 | MR