Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_3_a27, author = {P. V. Danchev}, title = {On a property of nilpotent matrices over an algebraically closed field}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {401--404}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a27/} }
P. V. Danchev. On a property of nilpotent matrices over an algebraically closed field. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 401-404. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a27/
[1] S. Breaz, G. Cǎlugǎreanu, P. Danchev, T. Micu, “Nil-clean matrix rings”, Lin. Alg. Appl., 439 (2013), 3115–3119 | MR | Zbl
[2] P.V. Danchev, “A generalization of $\pi$-regular rings”, Turk. J. Math., 43 (2019), 702–711 | MR | Zbl
[3] K. C. O'Meara, J. Clark, C. I. Vinsonhaler, Advanced Topics in Linear Algebra: weaving matrix problems through the Weyr form, Oxford Univ. Press, 2011 | MR | Zbl
[4] J. Šter, “On expressing matrices over $\mathbb Z_2$ as the sum of an idempotent and a nilpotent”, Lin. Alg. Appl., 544 (2018), 339–349 | MR