On a property of nilpotent matrices over an algebraically closed field
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 401-404
Cet article a éte moissonné depuis la source Math-Net.Ru
Suppose $F$ is an algebraically closed field. We prove that the ring $\prod_{n=1}^\infty \mathbb M_n(F)$ has a special property which is, somewhat, in sharp parallel with (and slightly better than) a property established by Šter (LAA, 2018) for the rings $\prod_{n=1}^\infty \mathbb M_n(\mathbb Z_2)$ and $\prod_{n=1}^\infty \mathbb M_n(\mathbb Z_4)$, where $\mathbb Z_2$ is the finite simple field of two elements and $\mathbb Z_4$ is the finite indecomposable ring of four elements.
Keywords:
Jordan canonical form, algebraically closed fields.
Mots-clés : nilpotent matrices, idempotent matrices
Mots-clés : nilpotent matrices, idempotent matrices
@article{CHEB_2019_20_3_a27,
author = {P. V. Danchev},
title = {On a property of nilpotent matrices over an algebraically closed field},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {401--404},
year = {2019},
volume = {20},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a27/}
}
P. V. Danchev. On a property of nilpotent matrices over an algebraically closed field. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 401-404. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a27/
[1] S. Breaz, G. Cǎlugǎreanu, P. Danchev, T. Micu, “Nil-clean matrix rings”, Lin. Alg. Appl., 439 (2013), 3115–3119 | MR | Zbl
[2] P.V. Danchev, “A generalization of $\pi$-regular rings”, Turk. J. Math., 43 (2019), 702–711 | MR | Zbl
[3] K. C. O'Meara, J. Clark, C. I. Vinsonhaler, Advanced Topics in Linear Algebra: weaving matrix problems through the Weyr form, Oxford Univ. Press, 2011 | MR | Zbl
[4] J. Šter, “On expressing matrices over $\mathbb Z_2$ as the sum of an idempotent and a nilpotent”, Lin. Alg. Appl., 544 (2018), 339–349 | MR