Extremal Nikolskii--Bernstein- and Tur\'an-type problems for~Dunkl~transform
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 394-400.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the interrelation between the extremal Turán-type problems and Nikolskii – Bernstein problems for nonnegative functions on $\mathbb{R}^{d}$ with the Dunkl weight. The Turán problem is to find the supremum of a given moment of a positive definite (with respect to the Dunkl transform) function with a support in the Euclidean ball and a fixed value at zero. In the sharp $L^{1}$-Nikolskii–Bernstein inequality, the supremum norm of the Dankl Laplacian of an entire function of exponential spherical type with the unit $L^{1}$-norm is estimated. Extremal Feuér and Beaumann problems is also mentioned. The Dunkl transform covers the case of the classical Fourier transform in the case of unit weight. Nikolskii–Bernstein inequalities are classical in approximation theory, and the Turán-type problems have applications in metric geometry. Nevertheless, we prove that they have the same answer, which is given explicitly. The easy proof is relied on our old results from the theory of solving extremal problems to the Dunkl transform.
Keywords: Dunkl weight, Fourier–Dunkl transform, entire function of exponential spherical type, positive definite function, Nikolskii–Bernstein constant, Turán extremal problem.
@article{CHEB_2019_20_3_a26,
     author = {D. V. Gorbachev and N. N. Dobrovolskii},
     title = {Extremal {Nikolskii--Bernstein-} and {Tur\'an-type} problems {for~Dunkl~transform}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {394--400},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a26/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - N. N. Dobrovolskii
TI  - Extremal Nikolskii--Bernstein- and Tur\'an-type problems for~Dunkl~transform
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 394
EP  - 400
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a26/
LA  - ru
ID  - CHEB_2019_20_3_a26
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A N. N. Dobrovolskii
%T Extremal Nikolskii--Bernstein- and Tur\'an-type problems for~Dunkl~transform
%J Čebyševskij sbornik
%D 2019
%P 394-400
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a26/
%G ru
%F CHEB_2019_20_3_a26
D. V. Gorbachev; N. N. Dobrovolskii. Extremal Nikolskii--Bernstein- and Tur\'an-type problems for~Dunkl~transform. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 394-400. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a26/

[1] Arestov V. V., Berdysheva E. E., “The Turán problem for a class of polytopes”, East J. Approx., 8:2 (2002), 381–388 | MR | Zbl

[2] Bianchi G., Kelly M., “A Fourier analytic proof of the Blaschke–Santaló inequality”, Proc. Amer. Math. Soc., 143 (2015), 4901–4912 | MR | Zbl

[3] Dai F., Gorbachev D., Tikhonov S., “Nikolskii constants for polynomials on the unit sphere”, J. d'Analyse Math., 2019 (to appear) ; arXiv: 1708.09837 | MR

[4] Gorbachev D. V., “An extremal problem for periodic functions with supports in the ball”, Math. Notes, 69:3–4 (2001), 313–319 | MR | Zbl

[5] Gorbachev D. V., Selected problems of function theory and approximation theory, and their applications, Grif and Co., Tula, 2005 (In Russ.) | MR

[6] Gorbachev D. V., Ivanov V. I., Ofitserov E. P., Smirnov O. I., “Some extremal problems of harmonic analysis and approximation theory”, Chebyshevskii Sbornik, 18:4 (2017), 139–166 (In Russ.) | MR

[7] Gorbachev D. V., Ivanov V. I., “Bohman extremal problem for the Dunkl transform”, Proc. Steklov Inst. Math., 297, Suppl 1 (2017), 88–96 | MR

[8] Gorbachev D. V., Tikhonov S. Y., “Wiener's problem for positive definite functions”, Math. Zeit., 289:3–4 (2018), 859–874 | MR | Zbl

[9] Gorbachev D. V., Dobrovolskii N. N., “Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}~dx)$ spaces”, Chebyshevskii Sbornik, 19:2 (2018), 67–79 (In Russ.) | MR | Zbl

[10] Gorbachev D. V., “Nikolskii – Bernstein constants for nonnegative entire functions of exponential type on the axis”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 24, no. 4, 2018, 92–103 (In Russ.) | MR

[11] Gorbachev D. V., Ivanov V. I., “Nikol'skii – Bernstein constants for entire functions of exponential spherical type in weighted spaces”, Trudy Instituta Matematiki i Mekhaniki URO RAN, 25, no. 2, 2019, 75–87 (In Russ.) | MR

[12] Gorbachev D. V., Ivanov V. I., “Turán, Fejér and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a Sturm–Liouville problem”, Sb. Math., 210:6 (2019), 809–835 | MR | Zbl

[13] Ivanov A. V., “Some extremal problem for entire functions in weighted spaces”, Izv. Tul. Gos. Univ., Ser. Estestv. Nauki, 2010, no. 1, 26–44 (In Russ.) | MR

[14] Kolountzakis M. N., Révész Sz. Gy., “On a problem of Turán about positive definite functions”, Proc. Amer. Math. Soc., 131 (2003), 3423–3430 | MR | Zbl

[15] Rösler M., “Dunkl Operators: Theory and Applications”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1817, Springer, Berlin, 2003, 93–135 | MR | Zbl

[16] Siegel C. L., “Über Gitterpunkte in konvexen Körpern und damit zusammenhängendes Extremal problem”, Acta Math., 65 (1935), 307–323 | MR

[17] Vaaler J. D., “Some extremal functions in Fourier analysis”, Bull. Amer. Math. Soc. (New Series), 12:2 (1985), 183–216 | MR | Zbl