@article{CHEB_2019_20_3_a26,
author = {D. V. Gorbachev and N. N. Dobrovolskii},
title = {Extremal {Nikolskii{\textendash}Bernstein-} and {Tur\'an-type} problems {for~Dunkl~transform}},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {394--400},
year = {2019},
volume = {20},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a26/}
}
D. V. Gorbachev; N. N. Dobrovolskii. Extremal Nikolskii–Bernstein- and Turán-type problems for Dunkl transform. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 394-400. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a26/
[1] Arestov V. V., Berdysheva E. E., “The Turán problem for a class of polytopes”, East J. Approx., 8:2 (2002), 381–388 | MR | Zbl
[2] Bianchi G., Kelly M., “A Fourier analytic proof of the Blaschke–Santaló inequality”, Proc. Amer. Math. Soc., 143 (2015), 4901–4912 | MR | Zbl
[3] Dai F., Gorbachev D., Tikhonov S., “Nikolskii constants for polynomials on the unit sphere”, J. d'Analyse Math., 2019 (to appear) ; arXiv: 1708.09837 | MR
[4] Gorbachev D. V., “An extremal problem for periodic functions with supports in the ball”, Math. Notes, 69:3–4 (2001), 313–319 | MR | Zbl
[5] Gorbachev D. V., Selected problems of function theory and approximation theory, and their applications, Grif and Co., Tula, 2005 (In Russ.) | MR
[6] Gorbachev D. V., Ivanov V. I., Ofitserov E. P., Smirnov O. I., “Some extremal problems of harmonic analysis and approximation theory”, Chebyshevskii Sbornik, 18:4 (2017), 139–166 (In Russ.) | MR
[7] Gorbachev D. V., Ivanov V. I., “Bohman extremal problem for the Dunkl transform”, Proc. Steklov Inst. Math., 297, Suppl 1 (2017), 88–96 | MR
[8] Gorbachev D. V., Tikhonov S. Y., “Wiener's problem for positive definite functions”, Math. Zeit., 289:3–4 (2018), 859–874 | MR | Zbl
[9] Gorbachev D. V., Dobrovolskii N. N., “Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}~dx)$ spaces”, Chebyshevskii Sbornik, 19:2 (2018), 67–79 (In Russ.) | MR | Zbl
[10] Gorbachev D. V., “Nikolskii – Bernstein constants for nonnegative entire functions of exponential type on the axis”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 24, no. 4, 2018, 92–103 (In Russ.) | MR
[11] Gorbachev D. V., Ivanov V. I., “Nikol'skii – Bernstein constants for entire functions of exponential spherical type in weighted spaces”, Trudy Instituta Matematiki i Mekhaniki URO RAN, 25, no. 2, 2019, 75–87 (In Russ.) | MR
[12] Gorbachev D. V., Ivanov V. I., “Turán, Fejér and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a Sturm–Liouville problem”, Sb. Math., 210:6 (2019), 809–835 | MR | Zbl
[13] Ivanov A. V., “Some extremal problem for entire functions in weighted spaces”, Izv. Tul. Gos. Univ., Ser. Estestv. Nauki, 2010, no. 1, 26–44 (In Russ.) | MR
[14] Kolountzakis M. N., Révész Sz. Gy., “On a problem of Turán about positive definite functions”, Proc. Amer. Math. Soc., 131 (2003), 3423–3430 | MR | Zbl
[15] Rösler M., “Dunkl Operators: Theory and Applications”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1817, Springer, Berlin, 2003, 93–135 | MR | Zbl
[16] Siegel C. L., “Über Gitterpunkte in konvexen Körpern und damit zusammenhängendes Extremal problem”, Acta Math., 65 (1935), 307–323 | MR
[17] Vaaler J. D., “Some extremal functions in Fourier analysis”, Bull. Amer. Math. Soc. (New Series), 12:2 (1985), 183–216 | MR | Zbl