Generalized Rauzy tilings and bounded remainder sets
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 372-389.

Voir la notice de l'article provenant de la source Math-Net.Ru

Rauzy introduced a fractal set associted with the toric shift by the vector $(\beta^{-1},\beta^{-2})$, where $\beta$ is the real root of the equation $\beta^3=\beta^2+\beta+1$. He show that this fractal can be partitioned into three fractal sets that are bounded remaider sets with respect to the considered toric shift. Later, the introduced set was named as the Rauzy fractal. Further, many generalizations of Rauzy fractal are discovered. There are many applications of the generalized Rauzy fractals to problems in number theory, dynamical systems and combinatorics.Zhuravlev propose an infinite sequence of tilings of the original Rauzy fractal and show that these tilings also consist of bounded remainder sets. In this paper we consider the problem of constructing similar tilings for the generalized Rauzy fractals associated with algebraic Pisot units.We introduce an infinite sequence of tilings of the $d-1$-dimensional Rauzy fractals associated with the algebraic Pisot units of the degree $d$ into fractal sets of $d$ types. Each subsequent tiling is a subdivision of the previous one. Some results describing the self-similarity properties of the introduced tilings are proved.Also, it is proved that the introduced tilings are so called generalized exchanding tilings with respect to some toric shift. In particular, the action of this shift on the tiling is reduced to exchanging of $d$ central tiles. As a corollary, we obtain that the Rauzy tiling of an arbitrary order consist of bounded remainder sets with respect to the considered toric shift.In addition, some self-similarity property of the orbit of considered toric shift is established.
Keywords: Rauzy tilings, Rauzy fractals, Pisot numbers, bounded remainder sets.
@article{CHEB_2019_20_3_a24,
     author = {A. V. Shutov},
     title = {Generalized {Rauzy} tilings and bounded remainder sets},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {372--389},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a24/}
}
TY  - JOUR
AU  - A. V. Shutov
TI  - Generalized Rauzy tilings and bounded remainder sets
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 372
EP  - 389
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a24/
LA  - ru
ID  - CHEB_2019_20_3_a24
ER  - 
%0 Journal Article
%A A. V. Shutov
%T Generalized Rauzy tilings and bounded remainder sets
%J Čebyševskij sbornik
%D 2019
%P 372-389
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a24/
%G ru
%F CHEB_2019_20_3_a24
A. V. Shutov. Generalized Rauzy tilings and bounded remainder sets. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 372-389. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a24/

[1] Rauzy G., “Nombres algeébriques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 | MR | Zbl

[2] Arnoux P., Berthe V., Ei H., Ito S., “Tilings, Quasicrystals, Discrete Planes, Generalized Substitutions, and Multidimensional Continued Fractions”, Discrete Mathematics and Theoretical Computer Science Proceedings AA (DM-CCG), 2001, 059–078 | MR

[3] Arnoux P., Ito S., “Pisot substitutions and Rauzy fractals”, Bull. Belg. Math. Soc. Simon Stevin, 8:2 (2001), 181–207 | MR | Zbl

[4] Pytheas Fogg N., Substitutions in dynamics, aritheoremetics and combinatorics, Springer, 2001 | MR

[5] Akiyama S., “Self affine tiling and Pisot numeration system”, Number Theory and its Applications, Kluwer, Kanemitsu, 1999, 7–17 | MR | Zbl

[6] V. Berthe, M. Rigo (eds.), Combinatorics, Automata and Number Theory, Cambridge University Press, 2010 | MR | Zbl

[7] Siegel A., Thuswaldner J., Topological properties of Rauzy fractals, Memoires de la SMF, 118 | MR | Zbl

[8] Shutov A. V., Maleev A. V., “Generalized Rauzy fractals and quasiperiodic tilings”, Classification and Application of Fractals: New Reserch, Nova Publishers, 2012, 55–111 | MR

[9] Zhuravlev V. G., “Rauzy tilings and bounded remainder sets on the torus”, Journal of Mathematical Sciences, 137:2 (2006), 4658–4672 | DOI | MR | Zbl

[10] Hecke E., “Eber Analytische Funktionen und die Verteilung van Zahlen mod Eins”, Math. Sem. Hamburg Univ., 5 (1921), 54–76 | DOI | MR

[11] Kesten H., “On a conjecture of Erdös and Szüsz related to uniform distribution mod 1”, Acta Arithmetica, 12:2 (1966), 193–212 | MR | Zbl

[12] Oren I., “Admissible functions with multiple discontinuities”, Israel Journal of Mathematics, 42:4 (1982), 353–360 | DOI | MR | Zbl

[13] Shutov A. V., “Optimal estimates in the problem of the distribution of fractional parts on bounded remainder sets”, Vestnik SamGU. Estesstvennonauchnaya setiya, 2007, no. 7, 168–175

[14] Krasil'shchikov V. V., Shutov A. V., “Description and Exact Maximum and Minimum Values of the Remainder in the Problem of the Distribution of Fractional Parts”, Math. Notes, 89:1 (2011), 59–67 | DOI | MR

[15] Ferenczi S., “Bounded remainder sets”, Acta Arithmetica, 61:4 (1992), 319–326 | DOI | MR | Zbl

[16] Grepstad S., Lev N., “Sets of bounded discrepancy for multi-dimensional irrational rotation”, Geometric and Functional Analysis, 25:1 (2015), 87–133 | DOI | MR | Zbl

[17] Rauzy G., “Ensembles a restes bornes” (Bordo, 1984), Seminaire de theorie des nombres de Bordeaux, 24 (1983/1984), 1–12 | MR

[18] Zhuravlev V. G., “Multi-dimensional Hecke theorem on the distribution of fractional parts”, St. Petersburg Math. J., 24:1 (2013), 71–97 | DOI | MR | Zbl

[19] Kuznetsova D. V., Shutov A. V., “Exchanged Toric Tilings, Rauzy Substitution, and Bounded Remainder Sets”, Mathematical Notes, 98:5–6 (2015), 932–948 | DOI | MR | Zbl

[20] Szüsz R., “Über die Verteilung der Vielfachen einer komplexen Zahl nach dem Modul des Einheitsquadrats”, Acta Math. Acad. Sci. Hungar, 5:1 (1954), 35–39 | DOI | MR | Zbl

[21] Liardet P., “Regularities of distribution”, Compositio Math., 61:3 (1987), 267–293 | MR | Zbl

[22] Heynes A., Koivusalo H., “Constructing bounded remainder sets and cut-and-project sets which are bounded distance to lattices”, Israel Journal of Mathematics, 212:1 (2016), 189–201 | DOI | MR

[23] Abrosimova A. A., “BR-sets”, Chebyshevskii Sbornik, 16:2 (2015), 8–22 | DOI | MR | Zbl

[24] Zhuravlev V. G., “Exchanged toric developments and bounded remainder sets”, Journal of Mathematical Sciences, 184:6 (2012), 716–745 | DOI | MR | Zbl

[25] Akiyama S., Barat G., Berthe V., Siegel A., “Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions”, Monatshefte fur Mathematik, 155:3 (2008), 377–419 | DOI | MR | Zbl

[26] Akiyama S., “On the boundary of self-affine tilings generated by Pisot numbers”, Journal of Math. Soc. Japan, 54:2 (2002), 283–308 | DOI | MR | Zbl

[27] Akiyama S., “Pisot number system and its dual tiling”, Physics and Theoretical Computer Science, IOS Press, 2007, 133–154 | MR

[28] Parry W., “On the $\beta$-expansions of real numbers”, Acta Math. Acad. Sci. Hungar., 11:3 (1960), 401–416 | MR | Zbl

[29] Renyi A., “Representations for real numbers and their ergodic properties”, Acta. Math. Acad. Sci. Hungar., 8:3 (1957), 477–493 | DOI | MR | Zbl

[30] Frougny C., Solomyak B., “Finite beta-expansions”, Ergod. Th. and Dynam. Sys., 12:4 (1992), 713–723 | DOI | MR | Zbl

[31] Berthe V., Siegel A., “Tilings associated with beta-numeration and substitution”, Integers: Electronic journal of combinatorial number theory, 5:3 (2005), A02 | MR | Zbl

[32] Weyl H., “Üeber die Gleichverteilung von Zahlen mod. Eins”, Math. Ann., 7:3 (1916), 313–352 | DOI | MR

[33] Zhuravlev V. G., “Induced bounded remainder sets”, St. Petersburg Mathematical Journal, 28:5 (2017), 671–688 | DOI | MR | Zbl

[34] Shutov A. V., “Substitutions and bounded remainder sets”, Chebyshevskii Sbornik, 19:2 (2018), 499–520 | DOI | MR