Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_3_a22, author = {J. Choi and A. I. Nizhnikov and I. Shilin}, title = {On one sum of {Hankel--Clifford} integral transforms of {Whittaker} functions}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {349--360}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a22/} }
TY - JOUR AU - J. Choi AU - A. I. Nizhnikov AU - I. Shilin TI - On one sum of Hankel--Clifford integral transforms of Whittaker functions JO - Čebyševskij sbornik PY - 2019 SP - 349 EP - 360 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a22/ LA - en ID - CHEB_2019_20_3_a22 ER -
J. Choi; A. I. Nizhnikov; I. Shilin. On one sum of Hankel--Clifford integral transforms of Whittaker functions. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 349-360. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a22/
[1] Abramowitz M., “Coulomb wave functions expressed in terms of Bessel-Clifford and Bessel functions”, Stud. Appl. Math., 29:1–4 (1950), 303–308 | MR
[2] Clifford W. K., “On Bessel's functions”, Mathematical Papers, Oxford University Press, London, 1882, 346–349
[3] Gilmore R., “Group theory”, Mathematical Tools for Physicists, Wiley-VCH, Weinheim, 2015, 159–210
[4] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Tables of Intefral Transforms, v. I, McGraw-Hill Book Company, New York–Toronto–London, 1954 | MR
[5] Hayek N., “Sobre la transformación de Hankel”, Actas de la VIII Reunión Anual de Matemáticos Epañoles, 1967, 47–60 | MR
[6] Kiryakova V., Hernanden Suarez V., “Bessel–Clifford third order differential operator and corresponding Laplace type integral transform”, Dissertationes Mathematicae, 340, 1995, 143–161 | MR | Zbl
[7] Méndez Pérez J. M. R., Socas Robayna M. M., “A pair of generalized Hankel-Clifford transformations and their applications”, J. Math. Anal. Appl., 154:2 (1991), 543–557 | MR | Zbl
[8] Paneva-Konovska J., “Bessel type functions: Relations with integrals and derivatives of arbitrary orders”, AIP Conference Proceedings, 2048 (2018), 050015 | DOI
[9] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, v. 1, Elementary Functions, OPA (Overseas Publishers Association), Amsterdam, 1986 | MR
[10] Shilin I. A., Choi J., “Integral and series representations of special functions related to the group $SO(2,2)$”, Ramanujan J., 44:1 (2017), 133–153 | MR | Zbl
[11] Shilin I. A., Choi J., “On matrix elements of the $SO(2,2)$-representation in a space of functions on $2\times4$-matrices”, Integral Transforms Spec. Funct., 29:10 (2018), 761–770 | MR | Zbl
[12] Shilin I. A., Choi J., Some integrals involving Coulomb functions related to three-dimensional proper Lorentz group, Submitted
[13] Temme N. M., Special Functions: An Introduction to the Classical Functions of Mathematical Physics, John Wiley and Sons, New York, 1996 | MR
[14] Vilenkin N. Ya., Pavlyuk A. P., “Representations of some semisimple Lie groups and special functions of the matrix argument”, Group Theoretical Methods in Physics, v. 1, Harwood Academic Publishers, Chur–London–Paris–New York, 1985 | MR
[15] Wang Z. X., Guo D. R., Special functions, World Scientific, Singapore–New Jersey–London–Hong Kong, 1989 | Zbl