On one sum of Hankel--Clifford integral transforms of Whittaker functions
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 349-360
Voir la notice de l'article provenant de la source Math-Net.Ru
In [11], the authors considered the realization $T$ of
$SO(2,2)$-representation in a space of homogeneous functions on
$2\times4$-matrices. In this sequel, we aim to
compute matrix
elements of the identical operator $T(e)$ and representation
operator $T(g)$ for an appropriate $g$ with respect to the mixed
basis related to two different bases in the $SO(2,2)$-carrier
space and evaluate some improper integrals involving a product of
Bessel-Clifford and Whittaker functions. The obtained result can
be rewritten in terms of Hankel-Clifford integral transforms and
their analogue. The first and the second Hankel-Clifford
transforms introduced by Hayek and Pérez–Robayna, respectively,
play an important role in the theory of fractional order
differential operators (see, e.g., [6, 8]). The similar
result have been derived recently by the authors for the regular
Coulomb function in [12].
Keywords:
group $SO(2,2)$, matrix elements of representation, Hankel-Clifford integral transform, Macdonald-Clifford integral transform, Whittaker functions, Bessel-Clifford functions.
@article{CHEB_2019_20_3_a22,
author = {J. Choi and A. I. Nizhnikov and I. Shilin},
title = {On one sum of {Hankel--Clifford} integral transforms of {Whittaker} functions},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {349--360},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a22/}
}
TY - JOUR AU - J. Choi AU - A. I. Nizhnikov AU - I. Shilin TI - On one sum of Hankel--Clifford integral transforms of Whittaker functions JO - Čebyševskij sbornik PY - 2019 SP - 349 EP - 360 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a22/ LA - en ID - CHEB_2019_20_3_a22 ER -
J. Choi; A. I. Nizhnikov; I. Shilin. On one sum of Hankel--Clifford integral transforms of Whittaker functions. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 349-360. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a22/