On one sum of Hankel--Clifford integral transforms of Whittaker functions
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 349-360

Voir la notice de l'article provenant de la source Math-Net.Ru

In [11], the authors considered the realization $T$ of $SO(2,2)$-representation in a space of homogeneous functions on $2\times4$-matrices. In this sequel, we aim to compute matrix elements of the identical operator $T(e)$ and representation operator $T(g)$ for an appropriate $g$ with respect to the mixed basis related to two different bases in the $SO(2,2)$-carrier space and evaluate some improper integrals involving a product of Bessel-Clifford and Whittaker functions. The obtained result can be rewritten in terms of Hankel-Clifford integral transforms and their analogue. The first and the second Hankel-Clifford transforms introduced by Hayek and Pérez–Robayna, respectively, play an important role in the theory of fractional order differential operators (see, e.g., [6, 8]). The similar result have been derived recently by the authors for the regular Coulomb function in [12].
Keywords: group $SO(2,2)$, matrix elements of representation, Hankel-Clifford integral transform, Macdonald-Clifford integral transform, Whittaker functions, Bessel-Clifford functions.
@article{CHEB_2019_20_3_a22,
     author = {J. Choi and A. I. Nizhnikov and I. Shilin},
     title = {On one sum of {Hankel--Clifford} integral transforms of {Whittaker} functions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {349--360},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a22/}
}
TY  - JOUR
AU  - J. Choi
AU  - A. I. Nizhnikov
AU  - I. Shilin
TI  - On one sum of Hankel--Clifford integral transforms of Whittaker functions
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 349
EP  - 360
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a22/
LA  - en
ID  - CHEB_2019_20_3_a22
ER  - 
%0 Journal Article
%A J. Choi
%A A. I. Nizhnikov
%A I. Shilin
%T On one sum of Hankel--Clifford integral transforms of Whittaker functions
%J Čebyševskij sbornik
%D 2019
%P 349-360
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a22/
%G en
%F CHEB_2019_20_3_a22
J. Choi; A. I. Nizhnikov; I. Shilin. On one sum of Hankel--Clifford integral transforms of Whittaker functions. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 349-360. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a22/