Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_3_a21, author = {S. S. Mamonov and I. V. Ionova and A. O. Kharlamova}, title = {Mechanisms for the origin of hidden synchronization of dynamic systems}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {333--348}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a21/} }
TY - JOUR AU - S. S. Mamonov AU - I. V. Ionova AU - A. O. Kharlamova TI - Mechanisms for the origin of hidden synchronization of dynamic systems JO - Čebyševskij sbornik PY - 2019 SP - 333 EP - 348 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a21/ LA - ru ID - CHEB_2019_20_3_a21 ER -
S. S. Mamonov; I. V. Ionova; A. O. Kharlamova. Mechanisms for the origin of hidden synchronization of dynamic systems. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 333-348. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a21/
[1] Bakunov G. M., Matrosov V. V., Shalfeev V. D., “On quasisynchronous modes in a phase-locked loop with a second-order filter with approximate consideration of delay”, Izv. vuzov “PND”, 19:3 (2011), 171–178 | Zbl
[2] Leonov G. A., Burkin I. M., Shepelyavy A. I., Frequency methods in the theory of oscillations, Science Publ. of St. Petersburg State University, SPb., 1992 | MR
[3] Mamonov S. S., “Dynamics of a frequency-phase locked loop with first-order filters”, Bulletin of the Novosib. State University. Series: Mathematics, Mechanics, Computer Science, 11:1 (2011), 70–81 | Zbl
[4] Mamonov S. S., Ionova I. V., “Application of rotation of a vector field to determine cycles of the second kind”, Bulletin of the Russian Academy of Natural Sciences. Differential equations, 14:5 (2014), 46–54
[5] Mamonov S. S., Kharlamova A. O., “Quasisynchronous regimes of the phase system”, Bulletin of the Ryazan State Radio Engineering University, 2016, no. 56, 45–51
[6] Mamonov S. S., Kharlamova A. O., “Separation of cycles of the second kind of frequency-phase locked loop”, Bulletin of the Russian Academy of Natural Sciences. Differential equations, 15:3 (2015), 97–102
[7] Mamonov S. S., Kharlamova A. O., “Determination of the conditions for the existence of limit cycles of the first kind of systems with cylindrical phase space”, Journal of the Srednevolzhsky Mathematical Society, 19:1 (2017), 67–76 | MR | Zbl
[8] Mamonov S. S., Kharlamova A. O., “Forced synchronization of phase-locked loop systems with delay”, Bulletin of the Ryazan State Radio Engineering University, 2017, no. 62, 26–35
[9] Mamonov S. S., Kharlamova A. O., “Numerical and analytical definition of cycles of the first kind of a phase system of differential equations”, Bulletin of the Russian Academy of Natural Sciences. Differential equations, 17:4 (2017), 48–56 | MR
[10] Mamonov S. S., Kharlamova A. O., “Cycles of the first kind of systems with a cylindrical phase space”, Results of science and technology. Series: Contemporary Mathematics and its Applications, 148, no. 4, VINITI, 2018, 83–92 | MR
[11] Mamonov S. S., Kharlamova A. O., Ionova I. V., “Oscillatory-rotational cycles of the phase system of differential equations”, Bulletin of the Russian Academy of Natural Sciences. Differential equations, 18:4 (2018), 51–57
[12] Mamonov S. S., Kharlamova A. O., Ionova I. V., “The curvature of the oscillatory cycles of phase systems”, Bulletin of the Russian Academy of Natural Sciences. Differential equations, 19:2 (2019), 105–110
[13] Shalfeev V. D., Matrosov V. V., Nonlinear dynamics of phase synchronization systems, Publ. of the UNN, N. Novgorod, 2013
[14] Matrosov V., Forced synchronization, Textbook. Allowance, Nizhny Novgorod, 2013
[15] Bakunov G. M., Matrosov V. V., Shalfeev V. D., “About regular quasysynchronous modes in the phase-locked loop”, Bulletin of Nizhny Novgorod State University, 2010, no. 6, 43–47
[16] Abramov V. V., “Conditions for the existence of a periodic solution of a second-order differential equation with a quadratic nonlinear part”, Bulletin of the Russian Academy of Natural Sciences. Differential equations, 18:4 (2018), 3–7 | Zbl
[17] Liskina E. Yu., “Conditions for the existence of nonzero periodic solutions of a second-order nonlinear autonomous dynamical system in the case of a pair of zero eigenvalues of the matrix of the linear approximation system”, Bulletin of the Russian Academy of Natural Sciences. Differential equations, 17:4 (2017), 38–43
[18] Besekersky V. A., Popov E. P., Theory of automatic control systems, Nauka, M., 1972
[19] Kapranov M. V., Kuleshov V. N., Utkin G. M., The theory of oscillations in radio engineering, Nauka, M., 1984
[20] Krasnoselsky M. A., The shift operator along the trajectories of differential equations, Nauka, M., 1966 | MR