Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_3_a18, author = {O. V. Kolpakova and O. V. Popov and V. N. Chubarikov}, title = {On a version of {Hadamard's} method in the theory of {Dirichlet's} $L$-functions}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {282--295}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a18/} }
TY - JOUR AU - O. V. Kolpakova AU - O. V. Popov AU - V. N. Chubarikov TI - On a version of Hadamard's method in the theory of Dirichlet's $L$-functions JO - Čebyševskij sbornik PY - 2019 SP - 282 EP - 295 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a18/ LA - ru ID - CHEB_2019_20_3_a18 ER -
O. V. Kolpakova; O. V. Popov; V. N. Chubarikov. On a version of Hadamard's method in the theory of Dirichlet's $L$-functions. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 282-295. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a18/
[1] Euler L., Introduction to the infinitesimal analysis, M., 1936 (in Russian)
[2] Riemann B., Works, M., 1948, 216–224
[3] Hadamard J., “Sur la distribution des z${\acute e}$ros de la fonction $\zeta(s)$ et cons${\acute e}$quencies arithmetiques”, Bull. Soc. Math. France, 24 (1896) | MR
[4] de la Valle${\acute e}$ Poussin C. J., “Recherches analytiques sur la theorie des nombres. Premiere partie: La fonction $\zeta(s)$ de Riemann et les nombres premiers general”, Ann. Soc. Sci. Bruxelles, 20 (1896), 183–256
[5] de la Valle${\acute e}$ Poussin C. J., “Sur la fonction $\zeta(s)$ de Riemann et le nombre des nombres premiers inf${\acute e}$rieurs ${\grave a}$ une limite donn${\acute e}$e”, Memories couronnes de l'Acad. Roy. des Sci. Belgique, 59:1 (1899–1900) | Zbl
[6] Weyl H., “Zur Abschätzung von $\zeta(1+it)$”, Math. Zs., 10 (1921), 88–101 | Zbl
[7] Littlewood J. E., “Researches in the theory of Riemann $\zeta$-function”, Proc. London Math. Soc., 20:2 (1922), 22–28 | MR | Zbl
[8] Landau E., “Uber die $\zeta$-Funktion und die $L$-Funktion”, Math. Zs., 20 (1924), 105–125 | MR | Zbl
[9] Titchmarsch E. K., The theory of the Riemann zeta-function, M., 1953
[10] Chudakov N. G., “On zeros of the Dirichlet $L$-functions”, Matem. Sb., 1(43) (1936), 591–602
[11] Chudakov N. G., “On zeros of the $\zeta(s)$ function”, Doklady AN SSSR, 1936, 187–201
[12] Vinogradov I. M., “A new estimation of the function $\zeta(1+it)$”, Izv. AN SSSR, Ser. matem., 22:2 (1958), 161–164 | MR | Zbl
[13] Vinogradov I. M., The method of trigonometrical sums in the theory of numbers, 2nd ed., correct. and supplement, M., 1980, 144 pp.
[14] Korobov N. M., “On zeros of the $\zeta(s)$ function”, Doklady AN SSSR, 118 (1958), 231–232 | Zbl
[15] Korobov N. M., “Estimations of trigonometric sums and their applications”, Uspehi matem. nauk, 13:4 (1958), 185–192 | MR | Zbl
[16] Richert H.-E., “Zur Abschätzung der Riemannschen Zeta-funktion in der Nahe der Vertikalen $\sigma=1$”, Math. Ann., 169:2 (1967), 97–101 | MR | Zbl
[17] Karatsuba A. A., “Estimations of trigonometric sums by the Vinogradov method and their applications”, Trudy MIAN SSSR, 112, 1971, 241–255 | MR | Zbl
[18] Arkhipov G., Buriev K., “Refinement of estimates for the Riemann zeta-function in a neibourhood of the line $\Re(s)=1$”, Integral Transforms and Special Functions, 1:1 (1993), 1–7 | MR | Zbl
[19] Davenport H., Multiplicative number theory, M., 1971, 200 pp.
[20] Voronin S. M., Karatsuba A. A., The Riemann zeta-function, M., 1994, 376 pp. | MR
[21] Karatsuba A. A., The foundation of the analytic number theory, M., 1983, 240 pp. | MR
[22] Popov O. V., “On Hadamard's method concerning zeros of the Riemann zeta-function”, Integral Transforms and Special Functions, 1:2 (1993), 143–144 | MR | Zbl
[23] Popov O. V., “The deduction of the modern limit of zeros of the Riemann zeta-function by the Hadamard method”, Vestnik MSU, ser. 1,mat.,mech., 1994:1, 51–54
[24] Postnikov A. G., “On the character sum by modulo, equil to a degree of prime”, Izv. AN SSSR, ser. mat., 19 (1955), 11–16 | Zbl
[25] Rozin S. M., “On zeros of the Dirichlet $L$-series”, Izv. AN SSSR, ser. mat., 23 (1959), 503–508 | MR | Zbl
[26] Karatsuba A. A., “Trigonometric sums of the special form and their aplications”, Izv. AN SSSR, ser. mat., 28 (1964), 237–248 | Zbl
[27] Chudakov N. G., “On zeros of the Dirichlet $L$-functions for modulo, equal to degrees of an odd prime”, Vest. LSU, ser. mat.,mech., 1966, no. 1, 93–98 | Zbl
[28] Chubarikov V. N., “A more precise boundary of zeros of the Dirichlet $L$-series by modulo, equal to degree of an prime”, Vest. MSU, ser. mat., mech., no. 1973, 46–52 | Zbl