On a version of Hadamard's method in the theory of Dirichlet's $L$-functions
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 282-295.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper a new version of the Hadamard's method in the theory of Dirichlet's $L$-functions is given. We prove of this method of the absence of the $L$-functions zeroes on the unit line. We show that the Hadamard's method allow to get results, which on the accuracy correspond to the Vallee Poussin results in the asymptotical law of the distribution of primes. Of this we extend possibilities of the Hadamard's method. New estimations of the zeta-sum twisted together with the Dirichlet's character by modulo, equals to the degree of an odd prime number are obtained that permits to get the modern limit of zeroes for the corresponding Dirichlet's $L$-function.
Keywords: Dirichlet's characters, the Hadamard's method, the asymptotical law of the distribution of primes with the Vallee Poussin remainder, Dirichlet's functions, the zeta-sum twisted together with the Dirichlet's character.
@article{CHEB_2019_20_3_a18,
     author = {O. V. Kolpakova and O. V. Popov and V. N. Chubarikov},
     title = {On a version of {Hadamard's} method in the theory of {Dirichlet's} $L$-functions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {282--295},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a18/}
}
TY  - JOUR
AU  - O. V. Kolpakova
AU  - O. V. Popov
AU  - V. N. Chubarikov
TI  - On a version of Hadamard's method in the theory of Dirichlet's $L$-functions
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 282
EP  - 295
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a18/
LA  - ru
ID  - CHEB_2019_20_3_a18
ER  - 
%0 Journal Article
%A O. V. Kolpakova
%A O. V. Popov
%A V. N. Chubarikov
%T On a version of Hadamard's method in the theory of Dirichlet's $L$-functions
%J Čebyševskij sbornik
%D 2019
%P 282-295
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a18/
%G ru
%F CHEB_2019_20_3_a18
O. V. Kolpakova; O. V. Popov; V. N. Chubarikov. On a version of Hadamard's method in the theory of Dirichlet's $L$-functions. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 282-295. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a18/

[1] Euler L., Introduction to the infinitesimal analysis, M., 1936 (in Russian)

[2] Riemann B., Works, M., 1948, 216–224

[3] Hadamard J., “Sur la distribution des z${\acute e}$ros de la fonction $\zeta(s)$ et cons${\acute e}$quencies arithmetiques”, Bull. Soc. Math. France, 24 (1896) | MR

[4] de la Valle${\acute e}$ Poussin C. J., “Recherches analytiques sur la theorie des nombres. Premiere partie: La fonction $\zeta(s)$ de Riemann et les nombres premiers general”, Ann. Soc. Sci. Bruxelles, 20 (1896), 183–256

[5] de la Valle${\acute e}$ Poussin C. J., “Sur la fonction $\zeta(s)$ de Riemann et le nombre des nombres premiers inf${\acute e}$rieurs ${\grave a}$ une limite donn${\acute e}$e”, Memories couronnes de l'Acad. Roy. des Sci. Belgique, 59:1 (1899–1900) | Zbl

[6] Weyl H., “Zur Abschätzung von $\zeta(1+it)$”, Math. Zs., 10 (1921), 88–101 | Zbl

[7] Littlewood J. E., “Researches in the theory of Riemann $\zeta$-function”, Proc. London Math. Soc., 20:2 (1922), 22–28 | MR | Zbl

[8] Landau E., “Uber die $\zeta$-Funktion und die $L$-Funktion”, Math. Zs., 20 (1924), 105–125 | MR | Zbl

[9] Titchmarsch E. K., The theory of the Riemann zeta-function, M., 1953

[10] Chudakov N. G., “On zeros of the Dirichlet $L$-functions”, Matem. Sb., 1(43) (1936), 591–602

[11] Chudakov N. G., “On zeros of the $\zeta(s)$ function”, Doklady AN SSSR, 1936, 187–201

[12] Vinogradov I. M., “A new estimation of the function $\zeta(1+it)$”, Izv. AN SSSR, Ser. matem., 22:2 (1958), 161–164 | MR | Zbl

[13] Vinogradov I. M., The method of trigonometrical sums in the theory of numbers, 2nd ed., correct. and supplement, M., 1980, 144 pp.

[14] Korobov N. M., “On zeros of the $\zeta(s)$ function”, Doklady AN SSSR, 118 (1958), 231–232 | Zbl

[15] Korobov N. M., “Estimations of trigonometric sums and their applications”, Uspehi matem. nauk, 13:4 (1958), 185–192 | MR | Zbl

[16] Richert H.-E., “Zur Abschätzung der Riemannschen Zeta-funktion in der Nahe der Vertikalen $\sigma=1$”, Math. Ann., 169:2 (1967), 97–101 | MR | Zbl

[17] Karatsuba A. A., “Estimations of trigonometric sums by the Vinogradov method and their applications”, Trudy MIAN SSSR, 112, 1971, 241–255 | MR | Zbl

[18] Arkhipov G., Buriev K., “Refinement of estimates for the Riemann zeta-function in a neibourhood of the line $\Re(s)=1$”, Integral Transforms and Special Functions, 1:1 (1993), 1–7 | MR | Zbl

[19] Davenport H., Multiplicative number theory, M., 1971, 200 pp.

[20] Voronin S. M., Karatsuba A. A., The Riemann zeta-function, M., 1994, 376 pp. | MR

[21] Karatsuba A. A., The foundation of the analytic number theory, M., 1983, 240 pp. | MR

[22] Popov O. V., “On Hadamard's method concerning zeros of the Riemann zeta-function”, Integral Transforms and Special Functions, 1:2 (1993), 143–144 | MR | Zbl

[23] Popov O. V., “The deduction of the modern limit of zeros of the Riemann zeta-function by the Hadamard method”, Vestnik MSU, ser. 1,mat.,mech., 1994:1, 51–54

[24] Postnikov A. G., “On the character sum by modulo, equil to a degree of prime”, Izv. AN SSSR, ser. mat., 19 (1955), 11–16 | Zbl

[25] Rozin S. M., “On zeros of the Dirichlet $L$-series”, Izv. AN SSSR, ser. mat., 23 (1959), 503–508 | MR | Zbl

[26] Karatsuba A. A., “Trigonometric sums of the special form and their aplications”, Izv. AN SSSR, ser. mat., 28 (1964), 237–248 | Zbl

[27] Chudakov N. G., “On zeros of the Dirichlet $L$-functions for modulo, equal to degrees of an odd prime”, Vest. LSU, ser. mat.,mech., 1966, no. 1, 93–98 | Zbl

[28] Chubarikov V. N., “A more precise boundary of zeros of the Dirichlet $L$-series by modulo, equal to degree of an prime”, Vest. MSU, ser. mat., mech., no. 1973, 46–52 | Zbl