On a version of Hadamard's method in the theory of Dirichlet's $L$-functions
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 282-295
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper a new version of the Hadamard's method in the theory of Dirichlet's $L$-functions is given. We prove of this method of the absence of the $L$-functions zeroes on the unit line.
We show that the Hadamard's method allow to get results, which on the accuracy correspond to the Vallee Poussin results in the asymptotical law of the distribution of primes. Of this we extend possibilities of the Hadamard's method. New estimations of the zeta-sum twisted together with the Dirichlet's character by modulo, equals to the degree of an odd prime number are obtained that permits to get the modern limit of zeroes for the corresponding Dirichlet's $L$-function.
Keywords:
Dirichlet's characters, the Hadamard's method, the asymptotical law of the distribution of primes with the Vallee Poussin remainder, Dirichlet's functions, the zeta-sum twisted together with the Dirichlet's character.
@article{CHEB_2019_20_3_a18,
author = {O. V. Kolpakova and O. V. Popov and V. N. Chubarikov},
title = {On a version of {Hadamard's} method in the theory of {Dirichlet's} $L$-functions},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {282--295},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a18/}
}
TY - JOUR AU - O. V. Kolpakova AU - O. V. Popov AU - V. N. Chubarikov TI - On a version of Hadamard's method in the theory of Dirichlet's $L$-functions JO - Čebyševskij sbornik PY - 2019 SP - 282 EP - 295 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a18/ LA - ru ID - CHEB_2019_20_3_a18 ER -
O. V. Kolpakova; O. V. Popov; V. N. Chubarikov. On a version of Hadamard's method in the theory of Dirichlet's $L$-functions. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 282-295. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a18/