Free rectangular $n$-tuple semigroups
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 261-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

An $n$-tuple semigroup is a nonempty set $G$ equipped with $n$ binary operations $\fbox{1}\,, \fbox{2}\,, ..., \fbox{n}\,$, satisfying the axioms $(x\fbox{r} \, y) \fbox{s}\, z=x\fbox{r}\,(y\fbox{s}\,z)$ for all $x,y,z \in G$ and $r,s\in \{1,2,...,n\}$. This notion was considered by Koreshkov in the context of the theory of $n$-tuple algebras of associative type. Doppelsemigroups are $2$-tuple semigroups. The $n$-tuple semigroups are related to interassociative semigroups, dimonoids, trioids, doppelalgebras, duplexes, $g$-dimonoids, and restrictive bisemigroups. If operations of an $n$-tuple semigroup coincide, the $n$-tuple semigroup becomes a semigroup. So, $n$-tuple semigroups are a generalization of semigroups. The class of all $n$-tuple semigroups forms a variety. Recently, the constructions of the free $n$-tuple semigroup, of the free commutative $n$-tuple semigroup, of the free $k$-nilpotent $n$-tuple semigroup and of the free product of arbitrary $n$-tuple semigroups were given. The class of all rectangular $n$-tuple semigroups, that is, $n$-tuple semigroups with $n$ rectangular semigroups, forms a subvariety of the variety of $n$-tuple semigroups. In this paper, we construct the free rectangular $n$-tuple semigroup and characterize the least rectangular congruence on the free $n$-tuple semigroup.
Keywords: $n$-tuple semigroup, free rectangular $n$-tuple semigroup, free $n$-tuple semigroup, semigroup, congruence.
@article{CHEB_2019_20_3_a16,
     author = {A. V. Zhuchok},
     title = {Free rectangular $n$-tuple semigroups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {261--271},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a16/}
}
TY  - JOUR
AU  - A. V. Zhuchok
TI  - Free rectangular $n$-tuple semigroups
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 261
EP  - 271
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a16/
LA  - en
ID  - CHEB_2019_20_3_a16
ER  - 
%0 Journal Article
%A A. V. Zhuchok
%T Free rectangular $n$-tuple semigroups
%J Čebyševskij sbornik
%D 2019
%P 261-271
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a16/
%G en
%F CHEB_2019_20_3_a16
A. V. Zhuchok. Free rectangular $n$-tuple semigroups. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 261-271. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a16/

[1] Bagherzadeha F., Bremnera M., Madariagab S., “Jordan trialgebras and post-Jordan algebras”, J. Algebra, 486 (2017), 360–395 | MR

[2] Bokut L. A., Chen Y.-Q., Liu C.-H., “Gröbner–Shirshov bases for dialgebras”, Int. J. Algebra Comput., 20:3 (2010), 391–415 | MR | Zbl

[3] Boyd S. J., Gould M., “Interassociativity and isomorphism”, Pure Math. Appl., 10:1 (1999), 23–30 | MR | Zbl

[4] Boyd S. J., Gould M., Nelson A. W., “Interassociativity of semigroups”, Proceedings of the Tennessee Topology Conference (Nashville, TN, USA, 1996), World Scientific, Singapore, 1997, 33–51 | MR | Zbl

[5] Casas J. M., “Trialgebras and Leibniz 3-algebras”, Bol. Soc. Mat. Mex., 12:2 (2006), 165–178 | MR | Zbl

[6] Drouzy M., La structuration des ensembles de semigroupes d'ordre 2, 3 et 4 ar la relation d'interassociativité, Manuscript, 1986

[7] Evans T., “The lattice of semigroup varieties”, Semigroup Forum, 2 (1971), 1–43 | MR | Zbl

[8] Givens B. N., Linton K., Rosin A., Dishman L., “Interassociates of the free commutative semigroup on $n$ generators”, Semigroup Forum, 74 (2007), 370–378 | MR | Zbl

[9] Gould M., Linton K. A., Nelson A. W., “Interassociates of monogenic semigroups”, Semigroup Forum, 68 (2004), 186–201 | MR | Zbl

[10] Givens B. N., Rosin A., Linton K., “Interassociates of the bicyclic semigroup”, Semigroup Forum, 94 (2017), 104–122 | DOI | MR | Zbl

[11] Hewitt E., Zuckerman H. S., “Ternary operations and semigroups”, Semigroups, Proceedings 1968 Wayne State U. Symposium on Semigroups, ed. K. W. Folley, Academic Press, New York, 1969, 55–83 | MR

[12] Koreshkov N. A., “$n$-Tuple algebras of associative type”, Russian Mathematics (Izvestiya VUZ. Matematika), 52:12 (2008), 28–35 | MR | Zbl

[13] Koreshkov N. A., “Nilpotency of $n$-tuple Lie algebras and associative $n$-tuple algebras”, Russian Mathematics (Izvestiya VUZ. Matematika), 54:2 (2010), 28–32 | MR | Zbl

[14] Koreshkov N. A., “Associative $n$-tuple algebras”, Math. Notes, 96:1 (2014), 38–49 | MR | Zbl

[15] Loday J.-L., “Dialgebras”, Dialgebras and related operads, Lect. Notes Math., 1763, Springer-Verlag, Berlin, 2001, 7–66 | MR | Zbl

[16] Loday J.-L., Ronco M. O., “Trialgebras and families of polytopes”, Contemp. Math., 346, 2004, 369–398 | MR | Zbl

[17] Pirashvili T., “Sets with two associative operations”, Centr. Eur. J. Math., 2 (2003), 169–183 | MR | Zbl

[18] Richter B., Dialgebren, Doppelalgebren und ihre Homologie, Diplomarbeit, Universitat Bonn, 1997 http://www.math.uni-hamburg.de/home/richter/publications.html | Zbl

[19] Schein B. M., “Restrictive bisemigroups”, Izv. Vyssh. Uchebn. Zaved. Mat., 1:44 (1965), 168–179 (in Russian) | MR | Zbl

[20] Zhuchok A. V., “Free commutative trioids”, Semigroup Forum, 98:2 (2019), 355–368 | DOI | MR | Zbl

[21] Zhuchok A. V., “Free left $n$-dinilpotent doppelsemigroups”, Commun. Algebra, 45:11 (2017), 4960–4970 | DOI | MR | Zbl

[22] Zhuchok A. V., “Free $n$-tuple semigroups”, Math. Notes, 103:5 (2018), 737–744 | DOI | MR | Zbl

[23] Zhuchok A. V., “Free products of dimonoids”, Quasigroups Relat. Syst., 21:2 (2013), 273–278 | MR | Zbl

[24] Zhuchok A. V., “Free products of doppelsemigroups”, Algebra Univers, 77:3 (2017), 361–374 | DOI | MR | Zbl

[25] Zhuchok A. V., Relatively free doppelsemigroups, Monograph series Lectures in Pure and Applied Mathematics, 5, Potsdam University Press, Germany, Potsdam, 2018, 86 pp. | MR | Zbl

[26] Zhuchok A. V., “Semilatties of subdimonoids”, Asian-Eur. J. Math., 4:2 (2011), 359–371 | DOI | MR | Zbl

[27] Zhuchok A. V., “Structure of free strong doppelsemigroups”, Commun. Algebra, 46:8 (2018), 3262–3279 | DOI | MR | Zbl

[28] Zhuchok A. V., “Structure of relatively free dimonoids”, Commun. Algebra, 45:4 (2017), 1639–1656 | DOI | MR | Zbl

[29] Zhuchok A. V., “Trioids”, Asian-Eur. J. Math., 8:4 (2015), 1550089, 23 pp. | DOI | MR | Zbl

[30] Zhuchok A. V., Demko M., “Free $n$-dinilpotent doppelsemigroups”, Algebra Discrete Math., 22:2 (2016), 304–316 | MR | Zbl

[31] Zhuchok A. V., Knauer K., “Abelian doppelsemigroups”, Algebra Discrete Math., 26:2 (2018), 290–304 | MR | Zbl

[32] Zhuchok A. V., Koppitz J., “Free products of $n$-tuple semigroups”, Ukrainian Math. J., 70:11 (2019), 1710–1726 | DOI | MR | Zbl

[33] Zhuchok A. V., Zhuchok Yul. V., “Free $k$-nilpotent $n$-tuple semigroups”, Fundamental and Applied Mathematics, 2019 (in Russian)

[34] Zhuchok A. V., Zhuchok Yul. V., “Free left $n$-dinilpotent dimonoids”, Semigroup Forum, 93:1 (2016), 161–179 | DOI | MR | Zbl

[35] Zhuchok A. V., Zhuchok Yul. V., Koppitz J., “Free rectangular doppelsemigroups”, Journal of Algebra and its Applications | DOI

[36] Zhuchok A. V., Zhuchok Yul. V., Zhuchok Y. V., “Certain congruences on free trioids”, Commun. Algebra, 47:12 (2019), 5471–5481 | DOI | MR | Zbl

[37] Zhuchok Yul. V., “On one class of algebras”, Algebra Discrete Math., 18:2 (2014), 306–320 | MR | Zbl