Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_3_a15, author = {A. A. Zhukova and A. V. Shutov}, title = {$n$-crowns in toric tilings into bounded remander sets}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {246--260}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a15/} }
A. A. Zhukova; A. V. Shutov. $n$-crowns in toric tilings into bounded remander sets. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 246-260. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a15/
[1] Arnoux P., Ito S., “Pisot substitutions and Rauzy fractals”, Bull. Belg. Math. Soc. Simon Stevin, 8:2 (2001), 181–207 | MR | Zbl
[2] Floreik K., “Une remarque sur la repartition des nombres $m\xi\bmod 1$”, Coll. Math. Wroclaw, 2 (1951), 323–324
[3] Lagarias J. C., Pleasants P. A. B., “Repetitive Delone sets and quasicrystals”, Ergod. Th. Dyn. Sys., 23 (2003), 831–867 | DOI | MR | Zbl
[4] Pytheas Fogg N., Substitutions in dynamics, arithmetics and combinatorics, Springer, 2001 | DOI | MR
[5] Rauzy G., “Nombres algébriques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 | DOI | MR | Zbl
[6] Ravenstein T. V., “The three gap theorem (Steinhaus conjecture)”, J. Austral. Math. Soc. Ser. A, 45 (1988), 360–370 | MR | Zbl
[7] Schattschneider D., Dolbilin N., “One corona is enough for the Euclidean plane”, Quasicrystals and discrete geometry (Toronto, ON, 1995), Fields Inst. Monogr., 10, Amer. Math. Soc., Providence. RI, 1998, 207–246 | MR | Zbl
[8] Shutov A. V., Maleev A. V., “Quasiperiodic planetilings based on stepped surfaces”, Acta Crystallographica. Section A: Foundations of Crystallography, 64:3 (2008), 376–382 | DOI | MR | Zbl
[9] Shutov A. V., Maleev A. V., Zhuravlev V. G., “Complex quasiperiodic self-similar tilings: Their parameterization, boundaries, complexity, growth and symmetry”, Acta Crystallographica. Section A: Foundations of Crystallography, 66:3 (2010), 427–437 | DOI | MR
[10] Siegel A., Thuswaldner J. M., “Topological properties of Rauzy fractals”, Mem. Soc. Math. Fr. N.S., 118 (2009), 1–144 | DOI | MR
[11] Slater N., “Gaps and steps for the sequence $n\theta$ mod 1”, Proc. Camb. Phil. Soc., 63 (1967), 1115–1123 | DOI | MR | Zbl
[12] Sós V. T. S., “On the distribution mod 1 of the sequence $n\alpha$”, Ann. Univ. Sci. Budapest Eötvös Sect. Math., 1 (1958), 127–134 | Zbl
[13] Świerczkowski S., “On successive settings of an arc on the circumference of a circle”, Fund. Math., 46 (1958), 187–189 | MR
[14] Zhuravlev V. G., “On additivity property of the complexity function related to rauzy tiling”, Analytic and Probabilistic Methods in Number Theory, 2007, 240–254 | MR | Zbl
[15] Zhukova A. A., Shutov A. V., “Rauzy substitution and local structure of torus tilings”, Chebyshevskii Sbornik, 2019:4 | Zbl
[16] Zhuravlev V. G., “Two-dimensional approximations by the method of dividing toric tilings”, Journal of Mathematical Sciences, 217:1 (2016), 54–64 | DOI | MR | Zbl
[17] Zhuravlev V. G., “Dividing toric tilings and bounded remainder sets”, Journal of Mathematical Sciences, 217:1 (2015), 65–80 | DOI
[18] Zhuravlev V. G., “Differentiation of induced toric tilings and multi-dimensional approximations of algebraic numbers”, Journal of Mathematical Sciences, 222:5 (2016), 544–584 | DOI | MR
[19] Zhuravlev V. G., “Induced bounded remainder sets”, St. Petersburg Math. J., 28 (2017), 671–688 | DOI | MR | Zbl
[20] Zhuravlev V. G., “Moduli of toric tilings into bounded remainder sets and balanced words”, St. Petersburg Math. J., 24 (2013), 601–629 | DOI
[21] Zhuravlev V. G., “One-dimensional Fibonacci tilings”, Izvestiya: Mathematics, 71:2 (2007), 281–323 | DOI | MR | Zbl
[22] Zhuravlev V. G., “Rauzy tilings and bounded remainder sets on the torus”, Journal of Mathematical Sciences, 137:2 (2006), 4658–4672 | DOI | MR | Zbl
[23] Zhuravlev V. G., Maleev A. V., “Layer-by-layer growth of quasi-periodic Rauzy tiling”, Crystallography Reports, 52:2 (2007), 180–186 | DOI
[24] Zhuravlev V. G., Maleev A. V., “Complexity function and forcing in the 2D quasi-periodic Rauzy tiling”, Crystallography Reports, 52:4 (2007), 582–588 | DOI
[25] Krasilshchikov V. V., Shutov A. V., One-dimensional quasiperiodic tilings and their applications, VF RUK, Vladimir, 2011
[26] Kuznetsova D. V., Shutov A. V., “Exchanged toric tilings, Rauzy substitution, and bounded remainder sets”, Mathematical Notes, 98:5–6 (2015), 932–948 | DOI | Zbl
[27] Manuylov N. N., “Self-similarity of some sequences of points on a circle”, Journal of Mathematical Sciences, 129:3 (2005), 3860–3867 | DOI | MR
[28] Manuylov N. N., “Direct renormalizations on the one-dimensional torus”, Journal of Mathematical Sciences, 133:6 (2006), 1686–1692 | DOI | MR | Zbl
[29] Shutov A. V., “Shifting on the torus and the multidimensional Hecke-Kesten problem”, Scientific notes of Oryol State University, 6:2 (2012), 249–253
[30] Shutov A. V., “Substitutions and bounded remainder sets”, Chebyshevskii Sbornik, 19:2 (2018), 501–522 | DOI | MR | Zbl
[31] Shutov A. V., “Derivatives of circle rotations and similarity of orbits”, Journal of Mathematical Sciences, 133:6 (2006), 1765–1771 | DOI | MR | Zbl
[32] Shutov A. V., “Number systems and bounded remainder sets”, Chebyshevskii Sbornik, 7:3 (2006), 110–128 | MR | Zbl
[33] Shutov A. V., Maleev A. V., “Strong parameterization and coordination encirclements of graph of Penrose tiling vertices”, Crystallography Reports, 62:4 (2017), 535–542 | DOI