On behavior of arithmetical functions, related to Chebyshev function
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 154-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

Many problems of Number Theory are connected with investigation of Dirichlet series $f(s)=\sum_{n=1}^{\infty} a_nn^{-s}$ and the adding functions $\Phi(x)=\sum_{n\leq x} a_n$ of their coefficients. The most famous Dirichlet series is the Riemann zeta function $\zeta(s)$, defined for any $s=\sigma+it$ with $\Re s=\sigma> 1$ as $\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}.$The square of zeta function $\zeta^{2}(s)=\sum_{n=1}^{\infty}\frac{\tau(n)}{n^s}, \,\, \Re s > 1,$ is connected with the divisor function $\tau (n)=\sum_ { d | n } 1$, giving the number of a positive integer divisors of positive integer number $n$. The adding function of the Dirichlet series $\zeta^2(s)$ is the function $D (x)=\sum_ { n\leq x}\tau(n)$; the questions of the asymptotic behavior of this function are known as Dirichlet divisor problem. Generally, $ \zeta^{k}(s)=\sum_{n=1}^{\infty}\frac{\tau_k(n)}{n^s}, \,\, \Re s > 1, $ where function $\tau_k (n)=\sum_{n=n_1\cdot...\cdot n_k} 1$ gives the number of representations of a positive integer number $n$ as a product of $k$ positive integer factors. The adding function of the Dirichlet series $ \zeta^k (s)$ is the function $D_k (x)=\sum_ { n\leq x}\tau_k(n)$; its research is known as the multidimensional Dirichlet divisor problem. The logarithmic derivative $\frac{\zeta^{'}(s)}{\zeta(s)}$ of zeta function can be represented as $\frac{\zeta^{'}(s)}{\zeta(s)}=-\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s},$ $\Re s >1.$ Here $\Lambda(n)$ is the Mangoldt function, defined as $\Lambda(n)=\log p$, if $n=p^{k}$ for a prime number $p$ and a positive integer number $k$, and as $\Lambda(n)=0$, otherwise. So, the Chebyshev function $\psi(x)=\sum_{n\leq x}\Lambda(n)$ is the adding function of the coefficients of the Dirichlet series $\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}$, corresponding to logarithmic derivative $\frac{\zeta^{'}(s)}{\zeta(s)}$ of zeta function. It is well-known in analytic Number Theory and is closely connected with many important number-theoretical problems, for example, with asymptotic law of distribution of prime numbers. In particular, the following representation of $\psi(x)$ is very useful in many applications: $\psi(x)=x-\sum_{|\Im \rho|\leq T}\frac{x^{\rho}}{\rho}+O\left(\frac{x\ln^{2}x}{T}\right), $ where $x=n+0,5$, $n \in\mathbb{N}$, $2\leq T \leq x$, and $\rho=\beta+i\gamma$ are non-trivial zeros of zeta function, i.e., the zeros of $\zeta(s)$, belonging to the critical strip $0 \Re s1$.We obtain similar representations over non-trivial zeros of zeta function for an arithmetic function, relative to the Chebyshev function: $\psi_{1}(x)=\sum_{n\leq x}(x-n)\Lambda(n).$ In fact, we prove the following theorem: $\psi_1(x)=\frac{x^2}{2}-\left(\frac{\zeta^{'}(0)}{\zeta(0)}\right)x-\sum_{|\Im \rho|\leq T}\frac{x^{\rho+1}}{\rho(\rho+1)}+O\left(\frac{x^{2}}{T^2}\ln^2 x\right)+O\left(\sqrt{x}\ln^2x\right), $ where $x>2$, $T \geq 2$, and $\rho=\beta+i\gamma$ are non-trivial zeros of zeta function, i.e., the zeros of $\zeta(s)$, belonging to the critical strip $0 \Re s1$.
Keywords: arithmetical functions, Dirichlet series, adding function of the coefficients of a Dirichlet series, the Riemann zeta function, the Chebyshev function, non-trivial zeros of the Riemann zeta function, Cauchy's residue theorem.
@article{CHEB_2019_20_3_a11,
     author = {S. A. Gritsenko and E. Deza and L. V. Varukhina},
     title = {On behavior of arithmetical functions, related to {Chebyshev} function},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {154--164},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a11/}
}
TY  - JOUR
AU  - S. A. Gritsenko
AU  - E. Deza
AU  - L. V. Varukhina
TI  - On behavior of arithmetical functions, related to Chebyshev function
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 154
EP  - 164
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a11/
LA  - ru
ID  - CHEB_2019_20_3_a11
ER  - 
%0 Journal Article
%A S. A. Gritsenko
%A E. Deza
%A L. V. Varukhina
%T On behavior of arithmetical functions, related to Chebyshev function
%J Čebyševskij sbornik
%D 2019
%P 154-164
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a11/
%G ru
%F CHEB_2019_20_3_a11
S. A. Gritsenko; E. Deza; L. V. Varukhina. On behavior of arithmetical functions, related to Chebyshev function. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 154-164. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a11/

[1] Deza E. I., Varukhina L. V., “Problems of the summation of arithmetical functions, relative to Chebyshev function”, Chebyshevskii sbornik, 19:2 (2018), 319–333 | Zbl

[2] Borevich Z. I., Shafarevich I. R., Theory of numbers, Nauka, M., 1985 | MR

[3] Vinogradov I. M., Bases of the theory of numbers, Nauka, M., 1981 | MR

[4] Voronin S. M., Karatsuba A. A., Riemann zeta function, Fizmatlit, M., 1994 | MR

[5] Karatsuba A. A., “Uniform estimate of error term in Dirichlet divisor problem”, Izv. Acad. of Sci. SSSR, Math., 36:3 (1972), 475–483 | Zbl

[6] Karatsuba A. A., Bases of the analytical theory of numbers, Nauka, M., 1983 | MR

[7] Panteleeva (Deza) E. I., “Dirichlet divisor problem in number fields”, Mathematical notes, 44:4 (1988), 494–505 | Zbl

[8] Panteleeva (Deza) E. I., “A remark to Divisor problem”, Mathematical notes, 53:4 (1993), 148–152 | Zbl

[9] Panteleeva (Deza) E. I., “Average values of some arithmetic functions”, Mathematical notes, 55:5 (1994), 7–12

[10] Panteleeva (Deza) E. I., “Dirichlet divisor problem in the ring of the Gaussian integers”, Works of MPGU, 2001, no. 4, 23–34

[11] Panteleeva (Deza) E. I., Varukhina L. V., “Estimations of adding function of Dirichlet series”, Scientific works of mathematical department of MPGU, MPGU, M., 2000, 45–56

[12] Panteleeva (Deza) E. I., Varukhina L. V., “On estimation of zeta sums and Dirichlet divisor problem”, Issue of St. Petersburg University, Series 1, 2013:4, 15–24

[13] Prahar K., Distribution of prime numbers, Mir, M., 1967

[14] Titchmarsh E. K., The theory of the Riemann zeta function, IL, M., 1953

[15] Titchmarsh E. K., The theory of functions, Nauka, M., 1980

[16] Iviĉ A., The Riemann zeta-function, J. Wiley Sons, New Jork, 1985 | MR | Zbl

[17] Deza E., Varukhina L., “On mean values of some arithmetic functions in number fields”, Discrete Mathematics, 308 (2008), 4892–4899 | MR | Zbl

[18] Deza E., Varukhina L., “Representations of arithmetic sums over non-trivial zeros of the zeta function”, Asian-European Journal of Mathematics, 1:4 (2008), 509–519 | MR | Zbl