Interrelation between Nikolskii--Bernstein constants for~trigonometric polynomials and entire functions of~exponential~type
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 143-153

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $0$, $\mathcal{C}(n;p;r)=\sup_{T}\frac{\|T^{(r)}\|_{L^{\infty}[0,2\pi)}}{\|T\|_{L^{p}[0,2\pi)}}$ and $\mathcal{L}(p;r)=\sup_{F}\frac{\|F^{(r)}\|_{L^{\infty}(\mathbb{R})}}{\|F\|_{L^{p}(\mathbb{R})}}$ be the sharp Nikolskii–Bernstein constants for $r$-th derivatives of trigonometric polynomials of degree $n$ and entire functions of exponential type $1$ respectively. Recently E. Levin and D. Lubinsky have proved that for the Nikolskii constants $$ \mathcal{C}(n;p;0)=n^{1/p}\mathcal{L}(p;0)(1+o(1)),\quad n\to \infty. $$ M. Ganzburg and S. Tikhonov generalized this result to the case of Nikolskii–Bernstein constants: $$ \mathcal{C}(n;p;r)=n^{r+1/p}\mathcal{L}(p;r)(1+o(1)),\quad n\to \infty. $$ They also showed the existence of the extremal polynomial $\tilde{T}_{n,r}$ and the function $\tilde{F}_{r}$ in this problem, respectively. Earlier, we gave more precise boundaries in the Levin–Lubinsky-type result, proving that for all $p$ and $n$ $$ n^{1/p}\mathcal{L}(p;0)\le \mathcal{C}(n;p;0)\le (n+\lceil 1/p\rceil)^{1/p}\mathcal{L}(p;0). $$ Here we establish close facts for the case of Nikolskii–Bernstein constants, which also imply the asymptotic Ganzburg–Tikhonov equality. The results are stated in terms of extremal functions $\tilde{T}_{n,r}$, $\tilde{F}_{r}$ and the Taylor coefficients of a kernel of type Jackson–Fejer $(\frac{\sin \pi x}{\pi x})^{2s}$. We implicitly use Levitan-type polynomials arising from the Poisson summation formula. We formulate one hypothesis about the signs of the Taylor coefficients of the extremal functions.
Keywords: trigonometric polynomial, entire function of exponential type, Nikolskii–Bernstein constant, Jackson–Fejer kernel, Levitan polynomials.
@article{CHEB_2019_20_3_a10,
     author = {D. V. Gorbachev and I. A. Martyanov},
     title = {Interrelation between {Nikolskii--Bernstein} constants for~trigonometric polynomials and entire functions of~exponential~type},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {143--153},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a10/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - I. A. Martyanov
TI  - Interrelation between Nikolskii--Bernstein constants for~trigonometric polynomials and entire functions of~exponential~type
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 143
EP  - 153
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a10/
LA  - ru
ID  - CHEB_2019_20_3_a10
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A I. A. Martyanov
%T Interrelation between Nikolskii--Bernstein constants for~trigonometric polynomials and entire functions of~exponential~type
%J Čebyševskij sbornik
%D 2019
%P 143-153
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a10/
%G ru
%F CHEB_2019_20_3_a10
D. V. Gorbachev; I. A. Martyanov. Interrelation between Nikolskii--Bernstein constants for~trigonometric polynomials and entire functions of~exponential~type. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 143-153. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a10/