Interrelation between Nikolskii--Bernstein constants for~trigonometric polynomials and entire functions of~exponential~type
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 143-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $0$, $\mathcal{C}(n;p;r)=\sup_{T}\frac{\|T^{(r)}\|_{L^{\infty}[0,2\pi)}}{\|T\|_{L^{p}[0,2\pi)}}$ and $\mathcal{L}(p;r)=\sup_{F}\frac{\|F^{(r)}\|_{L^{\infty}(\mathbb{R})}}{\|F\|_{L^{p}(\mathbb{R})}}$ be the sharp Nikolskii–Bernstein constants for $r$-th derivatives of trigonometric polynomials of degree $n$ and entire functions of exponential type $1$ respectively. Recently E. Levin and D. Lubinsky have proved that for the Nikolskii constants $$ \mathcal{C}(n;p;0)=n^{1/p}\mathcal{L}(p;0)(1+o(1)),\quad n\to \infty. $$ M. Ganzburg and S. Tikhonov generalized this result to the case of Nikolskii–Bernstein constants: $$ \mathcal{C}(n;p;r)=n^{r+1/p}\mathcal{L}(p;r)(1+o(1)),\quad n\to \infty. $$ They also showed the existence of the extremal polynomial $\tilde{T}_{n,r}$ and the function $\tilde{F}_{r}$ in this problem, respectively. Earlier, we gave more precise boundaries in the Levin–Lubinsky-type result, proving that for all $p$ and $n$ $$ n^{1/p}\mathcal{L}(p;0)\le \mathcal{C}(n;p;0)\le (n+\lceil 1/p\rceil)^{1/p}\mathcal{L}(p;0). $$ Here we establish close facts for the case of Nikolskii–Bernstein constants, which also imply the asymptotic Ganzburg–Tikhonov equality. The results are stated in terms of extremal functions $\tilde{T}_{n,r}$, $\tilde{F}_{r}$ and the Taylor coefficients of a kernel of type Jackson–Fejer $(\frac{\sin \pi x}{\pi x})^{2s}$. We implicitly use Levitan-type polynomials arising from the Poisson summation formula. We formulate one hypothesis about the signs of the Taylor coefficients of the extremal functions.
Keywords: trigonometric polynomial, entire function of exponential type, Nikolskii–Bernstein constant, Jackson–Fejer kernel, Levitan polynomials.
@article{CHEB_2019_20_3_a10,
     author = {D. V. Gorbachev and I. A. Martyanov},
     title = {Interrelation between {Nikolskii--Bernstein} constants for~trigonometric polynomials and entire functions of~exponential~type},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {143--153},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a10/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - I. A. Martyanov
TI  - Interrelation between Nikolskii--Bernstein constants for~trigonometric polynomials and entire functions of~exponential~type
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 143
EP  - 153
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a10/
LA  - ru
ID  - CHEB_2019_20_3_a10
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A I. A. Martyanov
%T Interrelation between Nikolskii--Bernstein constants for~trigonometric polynomials and entire functions of~exponential~type
%J Čebyševskij sbornik
%D 2019
%P 143-153
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a10/
%G ru
%F CHEB_2019_20_3_a10
D. V. Gorbachev; I. A. Martyanov. Interrelation between Nikolskii--Bernstein constants for~trigonometric polynomials and entire functions of~exponential~type. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 143-153. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a10/

[1] Arestov V., Babenko A., Deikalova M., Horváth Á., “Nikol'skii inequality between the uniform norm and integral norm with Bessel weight for entire functions of exponential type on the half-line”, Anal. Math., 44:1 (2018), 21–42 | DOI | MR | Zbl

[2] Dai F., Gorbachev D., Tikhonov S., “Nikolskii constants for polynomials on the unit sphere”, J. d'Analyse Math., 2019 (to appear) ; 21 pp., arXiv: 1708.09837 | MR

[3] Dai F., Gorbachev D., Tikhonov S., Estimates of the asymptotic Nikolskii constants for spherical polynomials, 2019, 27 pp., arXiv: 1907.03832

[4] Ganzburg M., Sharp constants of approximation theory. I. Multivariate Bernstein–Nikolskii type inequalities, 2019, 19 pp., arXiv: 1901.04400 | MR | Zbl

[5] Ganzburg M., Tikhonov S., “On Sharp Constants in Bernstein–Nikolskii Inequalities”, Constr. Approx., 45:3 (2017), 449–466 | MR | Zbl

[6] Gorbachev D. V., Ivanov V. I., “Nikol'skii–Bernstein constants for entire functions of exponential spherical type in weighted spaces”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 2, 2019, 75–87 | DOI

[7] Gorbachev D. V., Dobrovolskii N. N., “Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}~dx)$ spaces”, Chebyshevskii Sbornik, 19:2 (2018), 67–79 (In Russ.) | DOI | MR | Zbl

[8] Gorbachev D. V., Martyanov I. A., “On interrelation of Nikolskii Constants for trigonometric polynomials and entire functions of exponential type”, Chebyshevskii Sbornik, 19:2 (2018), 80–89 (In Russ.) | DOI | MR | Zbl

[9] Levin E., Lubinsky D., “$L_p$ Chritoffel functions, $L_p$ universality, and Paley–Wiener spaces”, J. D'Analyse Math., 125 (2015), 243–283 | MR | Zbl

[10] Levin E., Lubinsky D., “Asymptotic behavior of Nikolskii constants for polynomials on the unit circle”, Comput. Methods Funct. Theory, 15:3 (2015), 459–468 | MR | Zbl

[11] Nikolskii S. M., Approximation of functions of several variables and imbedding theorems, Springer, Berlin–Heidelberg–New York, 1975 | MR