Interrelation between Nikolskii--Bernstein constants for~trigonometric polynomials and entire functions of~exponential~type
Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 143-153
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $0$,
$\mathcal{C}(n;p;r)=\sup_{T}\frac{\|T^{(r)}\|_{L^{\infty}[0,2\pi)}}{\|T\|_{L^{p}[0,2\pi)}}$
and
$\mathcal{L}(p;r)=\sup_{F}\frac{\|F^{(r)}\|_{L^{\infty}(\mathbb{R})}}{\|F\|_{L^{p}(\mathbb{R})}}$
be the sharp Nikolskii–Bernstein constants for $r$-th derivatives of
trigonometric polynomials of degree $n$ and entire functions of exponential
type $1$ respectively. Recently E. Levin and D. Lubinsky have proved that for
the Nikolskii constants
$$
\mathcal{C}(n;p;0)=n^{1/p}\mathcal{L}(p;0)(1+o(1)),\quad n\to \infty.
$$
M. Ganzburg and S. Tikhonov generalized this result to the case of
Nikolskii–Bernstein constants:
$$
\mathcal{C}(n;p;r)=n^{r+1/p}\mathcal{L}(p;r)(1+o(1)),\quad n\to \infty.
$$
They also showed the existence of the extremal polynomial $\tilde{T}_{n,r}$ and
the function $\tilde{F}_{r}$ in this problem, respectively. Earlier, we gave
more precise boundaries in the Levin–Lubinsky-type result, proving that for
all $p$ and $n$
$$
n^{1/p}\mathcal{L}(p;0)\le \mathcal{C}(n;p;0)\le (n+\lceil
1/p\rceil)^{1/p}\mathcal{L}(p;0).
$$
Here we establish close facts for the case of Nikolskii–Bernstein constants,
which also imply the asymptotic Ganzburg–Tikhonov equality. The results are
stated in terms of extremal functions $\tilde{T}_{n,r}$, $\tilde{F}_{r}$ and
the Taylor coefficients of a kernel of type Jackson–Fejer $(\frac{\sin \pi
x}{\pi x})^{2s}$. We implicitly use Levitan-type polynomials arising from the
Poisson summation formula. We formulate one hypothesis about the signs of the
Taylor coefficients of the extremal functions.
Keywords:
trigonometric polynomial, entire function of exponential type, Nikolskii–Bernstein constant, Jackson–Fejer kernel, Levitan polynomials.
@article{CHEB_2019_20_3_a10,
author = {D. V. Gorbachev and I. A. Martyanov},
title = {Interrelation between {Nikolskii--Bernstein} constants for~trigonometric polynomials and entire functions of~exponential~type},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {143--153},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a10/}
}
TY - JOUR AU - D. V. Gorbachev AU - I. A. Martyanov TI - Interrelation between Nikolskii--Bernstein constants for~trigonometric polynomials and entire functions of~exponential~type JO - Čebyševskij sbornik PY - 2019 SP - 143 EP - 153 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a10/ LA - ru ID - CHEB_2019_20_3_a10 ER -
%0 Journal Article %A D. V. Gorbachev %A I. A. Martyanov %T Interrelation between Nikolskii--Bernstein constants for~trigonometric polynomials and entire functions of~exponential~type %J Čebyševskij sbornik %D 2019 %P 143-153 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a10/ %G ru %F CHEB_2019_20_3_a10
D. V. Gorbachev; I. A. Martyanov. Interrelation between Nikolskii--Bernstein constants for~trigonometric polynomials and entire functions of~exponential~type. Čebyševskij sbornik, Tome 20 (2019) no. 3, pp. 143-153. http://geodesic.mathdoc.fr/item/CHEB_2019_20_3_a10/