Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_2_a9, author = {E. I. Deza}, title = {Cones and polytopes of geleralized metrics}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {140--155}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a9/} }
E. I. Deza. Cones and polytopes of geleralized metrics. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 140-155. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a9/
[1] Deza M. M., Deza E. I., Dutour Sikirić M., “Polyhedral structures associated with quasi-metrics”, Chebyshevskii sbornik, 16:2 (2015), 79–92 | MR | Zbl
[2] Kudryashov B. D., Information Theory, Piter, StPb, 2009
[3] Lidovskii V. V., Information Theory, Sputnik, M., 2004
[4] Shannon C. E., A Mathematical Theory of Communication, IL, M., 1948
[5] M. Charikar, K. Makarychev, V. Makarychev, “Directed metrics and directed graph partitioning problem”, Proc. of 11-th ACM-SIAM Symp. on Discrete Algorithms, 2006, 51–60 | MR | Zbl
[6] P. Chebotarev, “Studying new classes of graph metrics”, Proceedings of the SEE Conference "Geometric Science of Information", GSI-2013, Lecture Notes in Computer Science, 8085, 2013, 207–214 | MR | Zbl
[7] P. Chebotarev, R. Agaev, “Forest matrices around the Laplacian matrix”, Linear Algebra and its Applications, 356 (2002), 253–274 | MR | Zbl
[8] P. Chebotarev, E. Deza, “Hitting time quasi-metric and its forest representation”, Optimization Letters, 2018 | DOI | MR
[9] P. Chebotarev, E. Shamis, The forest metric for graph verticies, 2006, arXiv: math/0602573 [math.CO] | MR
[10] P. Chebotarev, E. Shamis, Matrix forest theorems, 2006, arXiv: math/0602070 [math.CO]
[11] P. Chebotarev, E. Shamis, “On proximity measures for graph vertices”, Automation and Remote Control, 59 (1998), 1443–1459 | MR | Zbl
[12] P. Chebotarev, E. Shamis, “The matrix-forest theorem and measuring relations in small social groups”, Automation and Remote Control, 58 (1997), 1505–1514 | MR | Zbl
[13] M. M. Deza, E. I. Deza, Encyclopedia of Distances, 4-rd edition, Springer-Verlag, Berlin, 2016 | MR | Zbl
[14] M. M. Deza, E. I. Deza, “Cones of partial metrics”, Contrib. Discrete Math., 6:1 (2011), 26–47 | MR | Zbl
[15] M. M. Deza, E. I. Deza, J. Vidali, “Cones of weighted and partial metrics”, Proceedings of the International Conference on Algebra, 2010, 177–197 | MR
[16] M. M. Deza, M. Dutour, E. I. Deza, Generalizations of finite metrics and cuts, World Scientific, 2016 | MR | Zbl
[17] M. M. Deza, M. Dutour, E. I. Panteleeva, “Small cones of oriented semi-metrics”, Forum for Interdisciplinary Mathematics Proceedings on Statistics, Combinatorics and Related Areas, American Journal of Mathematical and Management Sciences, 22, 2002 | MR
[18] M. M. Deza, V. P. Grishukhin, E. I. Deza, “Cones of weighted quasi-metrics, weighted quasi-hypermetrics and of oriented cuts”, Mathematics of Distances and Applications, ITEA, Sofia, 2012, 31–53 | MR
[19] M. M. Deza, M. Laurent, Geometry of cuts, metrics, Springer-Verlag, Berlin, 1997 | MR | Zbl
[20] M. M. Deza, E. I. Panteleeva, “Quasi-semi-metrics, oriented multi-cuts and related polyhedra”, European Journal of Combinatorics, 21:6 (2000), 777–795 | MR | Zbl
[21] M. M. Deza, I. G. Rosenberg, “$n$-semimetrics”, European Journal of Combinatorics, 21:6, Special Issue Discrete Metric Spaces (2000), 797–806 | MR | Zbl
[22] P. G. Doyle, J. L. Snell, Random Walks and Electric Networks, Mathematical Association of America, Washington D. C., 1984 | MR | Zbl
[23] M. Fréchet, “Sur quelques points du calcul fonctionnel”, Rend. Circolo mat. Palermo, 22 (1906), 1–74 | Zbl
[24] A. D. Gvishiani, V. A. Gurvich, “Metric and ultrametric spaces of resistances”, Russian Mathematical Surveys, 42 (1987), 235–236 | MR | Zbl
[25] F. Hausdorff, Grundzüge der Mengenlehre, Leipzig, 1914 | MR
[26] D. J. Klein, M. Randic, “Resistance distance”, Journal of Mathematical Chemistry, 1993, no. 12, 81–95 | MR
[27] A. K. Seda, “Quasi-metrics and the semantic of logic programs”, Fundamenta Informaticaem, 29 (1997), 97–117 | MR | Zbl
[28] G. E. Sharpe, “Solution of the $(m+1)$-terminal resistive network problem by means of metric geometry”, Proceedings of the First Asilomar Conference on Circuits and Systems (Pacific Grove, CA), 1967, 319–328 | MR
[29] W. A. Wilson, “On quasi-metric spaces”, American J. of Math., 53 (1931), 575–681 | MR