Distribution of values of Jordan function in residue classes
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 123-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of a uniform distribution of integral-valued arithmetic functions in residue classes modulo $N$ was introduced by I. Niven [3]. For multiplicative functions, the concept of a weakly uniform distribution modulo $N$, which was introduced by V. Narkevich [6], turned out to be more convenient. In papers on the distribution in residue classes, we usually give asymptotic formulas for the number of hits of the values of functions in a particular class containing only the leading terms, which is explained by the application to the generating functions of the Tauberian theorem of H. Delange [12], although these generating functions have better analytical properties, which is necessary for the theorem of H. Delange. In this paper we consider the distribution of values of the Jordan function $J_2(n)$. For a positive integer $n$, the value of $J_2(n)$ is the number of pairwise incongruent pairs of integers that are primitive in modulo $n$. It is proved that $J_2(n)$ is weakly uniformly distributed modulo $N$ if and only if $N$ is relatively prime to $6$. Moreover, the paper contains an asymptotic formula representing an asymptotic series, which is achieved by applying Lemma 3, which is a Tauberian theorem type that replaces the theorem of H. Delange.
Keywords: tauberian theorem, distribution of values, residue classes.
@article{CHEB_2019_20_2_a8,
     author = {L. A. Gromakovskaya and B. M. Shirokov},
     title = {Distribution of values of {Jordan} function in residue classes},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {123--139},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a8/}
}
TY  - JOUR
AU  - L. A. Gromakovskaya
AU  - B. M. Shirokov
TI  - Distribution of values of Jordan function in residue classes
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 123
EP  - 139
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a8/
LA  - ru
ID  - CHEB_2019_20_2_a8
ER  - 
%0 Journal Article
%A L. A. Gromakovskaya
%A B. M. Shirokov
%T Distribution of values of Jordan function in residue classes
%J Čebyševskij sbornik
%D 2019
%P 123-139
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a8/
%G ru
%F CHEB_2019_20_2_a8
L. A. Gromakovskaya; B. M. Shirokov. Distribution of values of Jordan function in residue classes. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 123-139. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a8/

[1] L. G. Sathe, “On a congruence property of the divisor functions”, Amer. J. Math., 67 (1945), 397–406 | MR | Zbl

[2] R. A. Rankin, “The distribution of divisor functions”, Proc. Glasgow Math. Assoc., 5:1 (1961), 35–40 | MR | Zbl

[3] I. Niven, “Uniform distribution of sequences of integers”, Trans. Amer. Math. Soc., 98 (1961), 52–61 | MR | Zbl

[4] L. Kuipers, H. Niederreiter, Uniform distribution of sequences, Wiley-Interscience, New-York, 1974, 390 pp. ; Keipers L., Niderreiter G., Ravnomernoe raspredelenie posledovatelnostei, Nauka, M., 1985 | MR | Zbl

[5] S. Uchiyama, “On the uniform distribution of siquences of integer”, Proc. Japan Acad., 37 (1961), 605–609 | MR | Zbl

[6] W. Narkievicz, “On distribution of values of multiplicative functions in residue classes”, Acta Arithm., 12:3 (1967), 269–279 | MR

[7] J. Śliva, “On distribution of values of $\sigma(n)$ in residue classes”, Colloq. Math., 27:2 (1973), 283–271 | MR

[8] O. M. Fomenko, “Distribution of values of the multiplicative fubctions prime modulo”, Zapisky nauch. sem. LOMI, 93, 1980, 218–224 | Zbl

[9] Shirokov B. M., “Distribution of values arithmetical functiones in residue classes”, Zapisky nauch. sem. LOMI, 121, 1983, 176–186 | Zbl

[10] Shirokov B. M., “Distribution of $d(n,\omega)$ in residue classes”, Tudy PetrSU. Ser. Math., 1995, no. 2, 136–144 | Zbl

[11] Shirokov, B. M., “Distribution of values of the extended sum of divisors”, Tudy PetrSU. Ser. Mathematic., 1996, no. 3, 176–189 | Zbl

[12] H. Delange, “Sur la distribution des entiers ayant certaines proprietes”, Ann. Sci. Ecole norm. super., 73:1 (1956), 15–74 | MR | Zbl

[13] B. M. Shirokov, L. A. Gromakovskaya, “Distribution of values of the sum of unitary division in residue classes”, Issues of Analysis, 5(23):1 (2016), 31–44 | MR | Zbl

[14] J. Sandor, “Note on Jordan's arithmetical function”, Octogon Math. Mag., 1 (1993), 1–4 | MR

[15] J. Shulte, “Uber die Jordansche Verallgemeinerung der Eulerschen Funktion”, Resultate der Mathematik, 36:3/4 (1999), 354–364 | MR

[16] D. Andrica, M. Piticary, “On some extensions of Jordan arithmetic Functions”, Acta. Univ. Apulensis Math. Inform., 7 (2004), 13–22 | MR | Zbl

[17] K. Prachar, Distribution of prime numbers, Translated from Deutsch by A. A. Karacuba. With two supplements by M. B. Barban, A. I. Vinogradov, N. M. Korobov, ed. A. I. Vinogradov, Izdat. “Mir”, M., 1967, 512 pp. (russian)