Distribution of values of Jordan function in residue classes
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 123-139

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of a uniform distribution of integral-valued arithmetic functions in residue classes modulo $N$ was introduced by I. Niven [3]. For multiplicative functions, the concept of a weakly uniform distribution modulo $N$, which was introduced by V. Narkevich [6], turned out to be more convenient. In papers on the distribution in residue classes, we usually give asymptotic formulas for the number of hits of the values of functions in a particular class containing only the leading terms, which is explained by the application to the generating functions of the Tauberian theorem of H. Delange [12], although these generating functions have better analytical properties, which is necessary for the theorem of H. Delange. In this paper we consider the distribution of values of the Jordan function $J_2(n)$. For a positive integer $n$, the value of $J_2(n)$ is the number of pairwise incongruent pairs of integers that are primitive in modulo $n$. It is proved that $J_2(n)$ is weakly uniformly distributed modulo $N$ if and only if $N$ is relatively prime to $6$. Moreover, the paper contains an asymptotic formula representing an asymptotic series, which is achieved by applying Lemma 3, which is a Tauberian theorem type that replaces the theorem of H. Delange.
Keywords: tauberian theorem, distribution of values, residue classes.
@article{CHEB_2019_20_2_a8,
     author = {L. A. Gromakovskaya and B. M. Shirokov},
     title = {Distribution of values of {Jordan} function in residue classes},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {123--139},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a8/}
}
TY  - JOUR
AU  - L. A. Gromakovskaya
AU  - B. M. Shirokov
TI  - Distribution of values of Jordan function in residue classes
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 123
EP  - 139
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a8/
LA  - ru
ID  - CHEB_2019_20_2_a8
ER  - 
%0 Journal Article
%A L. A. Gromakovskaya
%A B. M. Shirokov
%T Distribution of values of Jordan function in residue classes
%J Čebyševskij sbornik
%D 2019
%P 123-139
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a8/
%G ru
%F CHEB_2019_20_2_a8
L. A. Gromakovskaya; B. M. Shirokov. Distribution of values of Jordan function in residue classes. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 123-139. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a8/