Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2019_20_2_a6, author = {D. V. Gorbachev and E. P. Ofitserov}, title = {New approach to searching for string median and visualization of~string clusters}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {93--107}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a6/} }
TY - JOUR AU - D. V. Gorbachev AU - E. P. Ofitserov TI - New approach to searching for string median and visualization of~string clusters JO - Čebyševskij sbornik PY - 2019 SP - 93 EP - 107 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a6/ LA - ru ID - CHEB_2019_20_2_a6 ER -
D. V. Gorbachev; E. P. Ofitserov. New approach to searching for string median and visualization of~string clusters. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 93-107. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a6/
[1] Gusfield D., Algorithms on strings, trees, and sequences: Computer science and computational biology, Cambridge University Press, New York, 1997
[2] E. P. Ofitserov, “Statistical model of T-cell receptor pereferic selection”, Izvestiya of Tula State University. Technical sciences, 2017, no. 2, 138–143
[3] E. P. Ofitserov, “Deep model of T-cell receptor selection”, Izvestiya of Tula State University. Technical sciences, 2017, no. 12-2, 350–355
[4] E. P. Ofitserov, “Motif based sequence classification”, Chebyshevskii Sbornik, 19:1 (2018), 187–199 (In Russ.) | DOI | MR | Zbl
[5] E. P. Ofitserov, “Software package for solving machine learning problems on string data using soft edit distance”, Izvestiya of Tula State University. Technical sciences, 2019, no. 5, 370–376
[6] J. T. Tou, R. C. Gonzalez, Pattern recognition principles, Addison-Wesley Publishing Company, 1974 | MR | Zbl
[7] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004 | MR | Zbl
[8] F. Casacuberta, M. de Antonio, “A greedy algorithm for computing approximate median strings”, VII Simposium Nacional de Reconocimiento de Formas y Análisis de Imágenes, 1997, 193–198
[9] C. De la Higuera, F. Casacuberta, “Topology of strings: Median string is NP-complete”, Theoretical Computer Science, 230:1–2 (2000), 39–48 | DOI | MR | Zbl
[10] M. Hayashida, H. Koyano, “Finding median and center strings for a probability distribution on a set of strings under Levenshtein distance based on integer linear programming”, Biomedical Engineering Systems and Technologies, BIOSTEC 2016, Communications in Computer and Information Science, 690, eds. Fred A., Gamboa H., Springer, Cham, 2017, 108–121
[11] F. Kruzslicz, “Improved greedy algorithm for computing approximate median strings”, Acta Cybernetica, 14:2 (1999), 331–339 | MR | Zbl
[12] C. D. Martínez-Hinarejos, A. Juan, F. Casacuberta, “Use of median string for classification”, Proc. 15th Int. Conf. on Pattern Recognition, ICPR-2000 (Barcelona, Spain, 2000), v. 2, 2000, 903–906 | DOI
[13] L. Van der Maaten, G. Hinton, “Visualizing data using t-SNE”, J. Mach. Learn. Res., 9 (2008), 2579–2605 | Zbl
[14] E. Ofitserov, V. Tsvetkov, V. Nazarov, Soft edit distance for differentiable comparison of symbolic sequences, 2019, arXiv: 1904.12562 | Zbl
[15] C. Olivares-Rodríguez, J. Oncina, “A stochastic approach to median string computation”, Structural, Syntactic, and Statistical Pattern Recognition, SSPR /SPR 2008, Lecture Notes in Computer Science, 5342, eds. da Vitoria Lobo N. et al., Springer, Berlin–Heidelberg, 2008, 431–440 | MR
[16] S. Ruder, An overview of gradient descent optimization algorithms, 2016, arXiv: 1609.04747
[17] J. W. Sammon, “A nonlinear mapping for data structure analysis”, IEEE Transactions on Computers, 18:5 (1969), 401–409
[18] W. S. Torgerson, “Multidimensional scaling I: Theory and method”, Psychometrika, 17 (1952), 401–419 | MR | Zbl
[19] L. Wang, T. Jiang, “On the complexity of multiple sequence alignment”, J. Computat. Biol., 1:4 (1994), 337–348