Muckenhoupt conditions for piecewise-power weights in Euclidean space with Dunkl measure
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 82-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

As a result of many years of research in the Fourier harmonic analysis, a class of linear integral Calderon–Sigmund operators was defined that are bounded in the spaces $L^p$ on $\mathbb{R}^d$ with the Lebesgue measure for $1$. B. Muckenhoupt found conditions on weight that are necessary and sufficient for the boundedness of the Calderon–Zygmund operators in $L^p$-spaces with one weight. They are now known as the Muckenhoupt $A_p$-conditions. G.H. Hardy and J.E. Littlewood $(d=1)$ and S.L. Sobolev $(d> 1)$ proved $(L^p,L^q)$-boundedness of the Riesz potential $I_{\ alpha}$ for $1 $, $\alpha=d\Bigl(\frac{1}{p}-\frac{1}{q}\Bigr)$. B. Muckenhoupt and R.L. Wheeden found $A_{p,q}$-weight condition for one weight $(L^p,L^q)$-boundedness of the Riesz potential. An important generalization of the Riesz potential has become the Dunkl–Riesz potential defined by S. Thangavelu and Yu. Xu in Euclidean space with the Dunkl measure. For the Dunkl–Riesz potential, we proved $(L^p,L^q)$-boundedness with two radial piecewise-power weights. In this paper, we define the Muckenhoupt $A_p$ and $A_{p,q}$-conditions for weights in Euclidean space with the Dunkl measure and find out when they are satisfied for piecewise-power weights. The obtained results show that the conditions of $(L^p,L^q)$-boundedness of the Dunkl–Riesz potential with one piecewise-power weight can be characterized using the $A_{p,q}$-condition. This suggests that the conditions of $(L^p,L^q)$-boundedness of the Dunkl–Riesz potential with one arbitrary weight can also be written using the $A_{p,q}$-condition.
Keywords: weighted function, Muckenhoupt conditions, piecewise-power weight, Dunkl measure, Dunkl–Riesz potential.
@article{CHEB_2019_20_2_a5,
     author = {D. V. Gorbachev and V. I. Ivanov},
     title = {Muckenhoupt conditions for piecewise-power weights in {Euclidean} space with {Dunkl} measure},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {82--92},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a5/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - V. I. Ivanov
TI  - Muckenhoupt conditions for piecewise-power weights in Euclidean space with Dunkl measure
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 82
EP  - 92
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a5/
LA  - ru
ID  - CHEB_2019_20_2_a5
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A V. I. Ivanov
%T Muckenhoupt conditions for piecewise-power weights in Euclidean space with Dunkl measure
%J Čebyševskij sbornik
%D 2019
%P 82-92
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a5/
%G ru
%F CHEB_2019_20_2_a5
D. V. Gorbachev; V. I. Ivanov. Muckenhoupt conditions for piecewise-power weights in Euclidean space with Dunkl measure. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 82-92. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a5/

[1] L. Grafacos, Classical Fourier Analysis, Graduate Texts in Mathematics, 249, Springer, New York, 2008, 489 pp. | MR

[2] L. Grafacos, Classical Fourier Analysis, Graduate Texts in Mathematics, 250, Springer, New York, 2009, 504 pp. | MR

[3] B. Muckenhoupt, “Weighted norm inequalities for the Hardy maximal function”, Trans. Amer. Math. Soc., 165 (1972), 207–226 | MR | Zbl

[4] B. Muckenhoupt, R. L. Wheeden, “Weighted norm inequalities for fractional integrals”, Trans. Amer. Math. Soc., 192 (1974), 261–274 | MR | Zbl

[5] G. H. Hardy, J. E. Littelwood, “Some properties of fractional integrals, I”, Math. Zeit., 27 (1928), 565–606 | MR | Zbl

[6] S. Soboleff, “Sur un théoréme d'analyse fonctionnelle”, Amer. Math. Soc. Transl., 1963, no. 2 (34), 39–68 | Zbl

[7] M. Rösler, “Dunkl operators. Theory and applications”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1817, Springer-Verlag, 2003, 93–135 | MR | Zbl

[8] S. Thangavelu, Y. Xu, “Riesz transform and Riesz potentials for Dunkl transform”, J. Comput. Appl. Math., 199 (2007), 181–195 | MR | Zbl

[9] D. V. Gorbachev, V. I. Ivanov, S. Yu. Tikhonov, “Positive $L^p$-bounded Dunkl-Type generalized translation operator and its applications”, Constructive approximation, 49:3 (2019), 555–605 | MR | Zbl

[10] D. V. Gorbachev, V. I. Ivanov, S. Yu. Tikhonov, Riesz potential and maximal function for Dunkl transform, Preprint CRM, No 1238, Barcelona, 2018, 28 pp. | MR

[11] D. V. Gorbachev, V. I. Ivanov, “Weighted inequalities for Dunkl–Riesz potential”, Chebyshevskii Sbornik, 20:1 (2019), 131–147 (In Russian) | MR | Zbl

[12] E. M. Stein, Harmonic analysis: Reals-variable methods, orthogonality and oscillatory integrals, Princeton University Press, Princeton, 1993, 716 pp. | MR

[13] F. Dai, “Multivariate polynomial inequalities with respect to doubling weights and $A_{\infty}$ weights”, J. Funct. Anal., 235 (2006), 137–170 | MR | Zbl