Selected questions of the theory of adding functions of Dirichlet series
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 55-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

Investigation of Dirichlet series $$f(s)=\sum_{n=1}^{\infty} a_nn^{-s}$$ and the adding functions $$\Phi(x)=\sum_{n\leq x} a_n$$ of their coefficients forms one of central domains of classical Number Theory. Under some special conditions for $$f(s)=\sum_{n=1}^{+\infty} a_nn^{-s},$$ the function $\Phi(x)$ can be represented using $f(s)$. This connection is given by the famous Perron formula $$\sum_{n\leq x} a_n = \frac{1}{2\pi i }\int_{c_0-i\infty}^{c_0+i\infty} f(s)\frac{x^s}{s}ds, \quad c_0>\sigma_0, $$ where $$\sum_{n=1}^{\infty} a_nn^{-s}$$ for $f(s)$ is absolutely convergenting for $\sigma>\sigma_0$. More precisely, classical scheme of a research of the adding function $$\Phi(x)=\sum_{n\leq x}a_n$$ of coefficients of $$f(s)=\sum_{n=1}^{\infty}a_nn^{-s}$$ leans on a formula, which (under certain conditions) is expressing the function $\Phi(x)$ through the integral $$\frac{1}{2\pi i}\int_{b-iT}^{b+iT} \frac{f(s)x^s}{s}ds.$$ In 1972, A. A. Karatsuba received an "integrated" formula of such kind, which connects $$\int_{1}^x\Phi(y)dy$$ with the integral $$\frac{1}{2\pi i}\int_{b-iT}^{b+iT} \frac{f(s)x^{s+1}}{s(s+1)}ds.$$ This formula allows to receive new results in the research of corresponding number-theoretical questions. In this paper we presernt a new formula, expressing the adding function $$\Phi(x)=\sum_{n\leq x}a_n$$ of $$f(s)=\sum_{n=1}^{+\infty}a_nn^{-s}$$ through $f(s),$ related to the Perron formula and to the integrated formula of A. A. Karatsuba. In fact, the following statement is proved. Let the row $$f(s)=\sum_{n=1}^{+\infty}a_nn^{-s}$$ is absolutely convergenting for $\mathrm{Re}\, s >1$, $a_n=O(n^{\varepsilon})$, where $\varepsilon>0$ is any small real number, and for $\sigma\rightarrow 1+$ there is an estimation $$\sum_{n=1}^{\infty}|a_n|n^{-\sigma}=O((\sigma-1)^{-\alpha}), \,\, \alpha>0.$$ Then for any $b \geq b_0>1$, $T\geq 1$, $x=N+0,5$, $H>b$ we have the formula $$\Phi(x)=\sum_{n\leq x}a_n = \frac{1}{2\pi i}\int_{b-iT}^{b+iT} f(s)\frac{x^sH}{s(H-s)}ds +$$ $$ +O\left(\frac{x^bH}{T^2(b-1)^{\alpha}}\right) +O\left(\frac{x^{1+\varepsilon}H\log x}{T^2}\right)+O\left(x^{\varepsilon}e^{H\log\frac{x}{x+0,5}}\left(1+\frac{x}{H}\right)\right).$$ The most famous Dirichlet series is the Riemann zeta function $\zeta(s)$, defined for any $s=\sigma+it$ with $\mathrm{Re}\, s=\sigma> 1$ as $$\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}.$$ The square of zeta function is connected with the divisor function $$\tau (n)=\sum_ { d | n } 1,$$ giving the number of positive integer divisors of positive integer number $n$. Generally, $$ \zeta^{k}(s)=\sum_{n=1}^{\infty}\frac{\tau_k(n)}{n^s}, \quad \mathrm{Re}\, s > 1, $$ where function $$\tau_k (n)=\sum_{n=n_1\cdot \ldots\cdot n_k} 1$$ gives the number of representations of a positive integer number $n$ as a product of $k$ positive integer factors. The adding function of the Dirichlet series $ \zeta^k (s)$ is the function $$D_k (x)=\sum_ { n\leq x}\tau_k(n);$$ its research is known as the Dirichlet divisor problem. In this article we prove two new asymptotic formulas for the functions $$\sum_{n \leq x} \tau_{k_{1}}(n) \cdot \ldots \cdot \tau_{k_{l}}(n)$$ и $$ \sum_{n\leq x}\tau_{k}(n^{2}),$$ connected with $D_k(x)$. $$\sum_{n \leq x} \tau_{k_{1}}(n) \cdot\ldots \cdot \tau_{k_{l}}(n)=x P_{m}(\log x) + \theta x^{1 - \frac{1}{13}m^{-2/3}}(C\log x)^{m},$$ where $l \geq 1$, $k_{1}, \dots, k_{l} \geq 2$, $m=k_{1}\cdot \ldots \cdot k_{l}$, $P_{m}$ is a polinomial of degree $m-1$, $\theta$ is a complex number, $|\theta|\leq 1$, $m\ll \log^{\frac{5}{6}}x$, $C>0$ is an absolute constant. $$\sum_{n\leq x}\tau_{k}(n^{2})=xP_{m}(\log x) + \theta x^{1 - \frac{1}{13}m^{-2/3}}(C\log x)^{m},$$ where $k \geq 2$, $m=\frac{k(k+1)}{2}$, $P_{m}$ is a polinomial of degree $m-1$, $\theta$ is a complex number, $|\theta|\leq 1$, $m\ll \log^{\frac{5}{6}}x$, $C>0$ is an absolute constant. Other well-known example of Dirichlet series is given by Dirichlet $L$-function $$L(s, \chi)=\sum_{n=1}^{\infty} \chi(n)n^{-s}, \mathrm{Re}\, s>1,$$ where $\chi$ is a Dirichlet character modulo $D$. A product of several $L$-functions gives for $\mathrm{Re}\, s>1$ a row $$L_1(s,\chi_1)\cdot \ldots\cdot L_k(s,\chi_k)=\sum_{n=1}^{\infty}c_nn^{-s},$$ with adding function $$C_k(x)=\sum_{n\leq x}c_n=\sum_{n_1\cdot \ldots\cdot n_k\leq x}\chi_1(n_1)\cdot \ldots\cdot \chi_k(n_k).$$ The problem of asymptotic behavior of $C_k(x)$ is a generalisation of the Dirichlet divisor problem. It is connected with the divisor problem in number fields, in particular, in quadratic fields and in сyclotomic fields. In this article we give new asymptotic formulas for the mean values of the two functions $\tau^{K}_{k_{1}}(n) \cdot \ldots \cdot \tau^{K}_{k_{l}}(n)$ and $\tau^K_k(n^2)$, connected with the function $\tau_k(n)$, in the quadratic field $K=Q(\sqrt{D})$, $D$ is squarefree integer number, and in cyclotomic field $K=Q(\varsigma)$, $\varsigma^{t}=1$, with the constant $c=\frac{1}{13}$ in the exponent of the error term.
Keywords: Dirichlet series, adding functions of the coefficients of Dirichlet series, Riemann zeta function, Dirchlet $L$-function, divisor function, Dirichlet divisor problem.
@article{CHEB_2019_20_2_a4,
     author = {L. V. Varukhina},
     title = {Selected questions of the theory of adding functions of {Dirichlet} series},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {55--81},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a4/}
}
TY  - JOUR
AU  - L. V. Varukhina
TI  - Selected questions of the theory of adding functions of Dirichlet series
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 55
EP  - 81
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a4/
LA  - ru
ID  - CHEB_2019_20_2_a4
ER  - 
%0 Journal Article
%A L. V. Varukhina
%T Selected questions of the theory of adding functions of Dirichlet series
%J Čebyševskij sbornik
%D 2019
%P 55-81
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a4/
%G ru
%F CHEB_2019_20_2_a4
L. V. Varukhina. Selected questions of the theory of adding functions of Dirichlet series. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 55-81. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a4/

[1] Vinogradov I. M., Bases of the theory of numbers, Nauka, M., 1981 | MR

[2] Voronin S. M., Karatsuba A. A., Riemann zeta function, Fizmatlit, M., 1994 | MR

[3] Deza E. I., Varukhina L. V., “On an estimation of zeta sum and on Dirichlet divisor problem”, Vestnik of Saint Petersburg University. Ser. 1 (Mathematics, Mechanics, Astronomy), 2013, no. 4, 15–24

[4] Deza E. I., Varukhina L. V., “Problems of the summation of arithmetical functions, relative to Chebyshev function”, Chebyshevskii sbornik, 19:2 (2018), 319–333 | Zbl

[5] Karatsuba A. A., “Estimates of trigonometric summs by Vinogradov method and their application”, Works of Math. instute of Steklov, 112, 1971, 241–255 | MR | Zbl

[6] Karatsuba A. A., “Uniform estimate of error term in Dirichlet divisor problem”, Izv. Acad. of Sci. SSSR, Math., 36:3 (1972), 475–483 | Zbl

[7] Karatsuba A. A., “Dirichlet divisor problem in Number Fields”, Dokl. of Acad. of Sc. URSS, 204:3 (1972), 55–59

[8] Karatsuba A. A., Bases of the analytical theory of numbers, Nauka, M., 1983 | MR

[9] K. K. Mardganishvili, “An estimate of one arithmetic sum”, Dokl. Acad. of Sci. URSS, 22:7 (1939), 391–393

[10] Panteleeva (Deza) E. I., “Dirichlet divisor problem in number fields”, Mathematical notes, 44:4 (1988), 494–505 | Zbl

[11] Panteleeva (Deza) E. I., “A remark to Divisor problem”, Mathematical notes, 53:4 (1993), 148–152 | Zbl

[12] Panteleeva (Deza) E. I., “Average values of some arithmetic functions”, Mathematical notes, 55:5 (1994), 7–12

[13] Panteleeva (Deza) E. I., “Dirichlet divisor problem in the ring of the Gaussian integers”, Works of MPGU, 2001, no. 4, 23–34

[14] Panteleeva (Deza) E. I., Varukhina L. V., “Estimations of adding function of Dirichlet series”, Scientific works of mathematical department of MPGU, MPGU, M., 2000, 45–56

[15] Prahar K., Distribution of prime numbers, Mir, M., 1967

[16] Titchmarsh E. K., The theory of the Riemann zeta function, IL, M., 1953

[17] Titchmarsh E. K., The theory of functions, Nauka, M., 1980

[18] E. Deza, L. Varukhina, “On mean values of some arithmetic functions in number fields”, Discrete Mathematics, 308 (2008), 4892–4899 | MR | Zbl

[19] E. Deza, L. Varukhina, “Representations of arithmetic sums over non-trivial zeros of the zeta function”, Asian-European Journal of Mathematics, 1:4 (2008), 509–519 | MR | Zbl

[20] P. Dirichlet, “Über die Bestimmung der mittleren Werte in der Zahlentheorie”, Abh. Acad. Wiss., v. 2, Berlin, 1849, 49–66

[21] A. Iviĉ, The Riemann zeta-function, J. Wiley Sons, New Jork, 1985 | MR | Zbl

[22] E. Landay, “Über die Anzahl der Gitterpunkte in gewissen Bereichen”, Nachr. Akad. Wiss. Göttingen. Math-Phys. Kl., 6 (1912), 687–771