Simulation of computer systems with FIFO-discipline interrupt handling
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 499-511.

Voir la notice de l'article provenant de la source Math-Net.Ru

The FIFO (First In First Out) discipline of interrupt processing is widely used in Von Neumann type computers of informational and digital control systems. The goal of implementing such modes of operation — optimization time to data access — is achievable only when there is an adequate model, which describes data processing in the system. The analytical model is worked out with use the fundamental mathematical apparatus of Petri–Markov nets. The initial Petri–Markov model is divided into hierarchical levels in accordance with the number of interrupts in queue for processing. It is shown, that from the current level it is possible to switch both to the previous and to the next interrupt. Dependencies for determine the time of residence on the current level, and the probabilities of switching to conjugate levels are obtained. The method of Petri–Markov model transformation into the semi-Markov process is proposed. It is shown, that semi-Markov process obtained has the binary tree structure. Dependences for determining the time and probabilistic characteristics of wandering through a binary tree, are obtained.
Keywords: FIFO discipline, interruption, time characteristics, Petri–Markov net, semi-Markov process, “competition”, binary tree.
@article{CHEB_2019_20_2_a37,
     author = {E. V. Larkin and A. N. Privalov},
     title = {Simulation of computer systems with {FIFO-discipline} interrupt handling},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {499--511},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a37/}
}
TY  - JOUR
AU  - E. V. Larkin
AU  - A. N. Privalov
TI  - Simulation of computer systems with FIFO-discipline interrupt handling
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 499
EP  - 511
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a37/
LA  - ru
ID  - CHEB_2019_20_2_a37
ER  - 
%0 Journal Article
%A E. V. Larkin
%A A. N. Privalov
%T Simulation of computer systems with FIFO-discipline interrupt handling
%J Čebyševskij sbornik
%D 2019
%P 499-511
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a37/
%G ru
%F CHEB_2019_20_2_a37
E. V. Larkin; A. N. Privalov. Simulation of computer systems with FIFO-discipline interrupt handling. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 499-511. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a37/

[1] S. G. Tzafestas, Introduction to Mobile Robot Control, Elsevier, 2014, 750 pp.

[2] I. D. Landau, G. Zito, Digital Control Systems, Design, Identification and Implementation, Springer, 2006, 484 pp.

[3] J. Aström, Wittenmark B., Computer Controlled Systems: Theory and Design, Tsinghua University Press. Prentice Hall, 2002, 557 pp.

[4] J. Regehr, U. Duongsaa, “Preventing interrupt overload”, Proceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems, 2005, 50–58

[5] M. Czerwinski, E. Cutrell, E. Horvitz, “Instant messaging and interruption: Influence of task type on performance”, Proceedings of OZCHI (Sydney, Australia 2000) https://interruptions.net/literature/Czerwinski-OZCHI00.pdf

[6] T. R. Bielecki, J. Jakubowski, M. Niewgiowski, “Conditional Markov chains: Properties, construction and structured dependence”, Stochastic Processes and their Applications, 127:4 (2017), 1125–1170 | MR | Zbl

[7] W. K. Ching, X. Huang, M. K. Ng, T. K. Siu, Markov Chains: Models, Algorithms and Applications, International Series in Operations Research Management Science, 189, Springer Science + Business Media NY, 2013, 241 pp. | MR | Zbl

[8] A. A. Markov, “Extension of the law of large numbers to dependent quantities”, Izvestiia Fiz. Matem. Obsch. Kazan Univ., (2-nd Ser.), 1906, 135–156 | Zbl

[9] R. A. Howard, Dynamic Probabilistic Systems, v. 1, Markov Models; v. II, Semi-Markov and Decision Processes, Courier Corporation, 2012

[10] J. Janssen, R. Manca, Applied Semi-Markov processes, Springer US, 2006, 310 pp. | MR | Zbl

[11] E. V. Larkin, A. A. Malikov, A. N. Ivutin, “Petri-Markov model of fault-tolerant computer systems”, 4th International Conference on Control, Decision and Information Technologies (CoDIT) (5–7 April 2017, Barcelona, Spain), IEEE, 2017, 416–420

[12] M. Heymann, “Concurrency and Discrete Event Control”, IEEE Control Syst. Mag., 10 (1990), 103–112

[13] R. Valk, “Concurrency in Communicating Object Petri Nets”, Concurr. object-oriented Program. Petri nets, 2001, 164–195 | Zbl

[14] A. N. Ivutin, E. V. Larkin, “Simulation of Concurrent Games”, Bulletin of the South Ural State University. Series: Mathematical Modeling, Programming and Computer Software, 8:2 (2015), 43–54 | Zbl

[15] E. V. Larkin, A. N. Ivutin, V. V. Kotov, A. N. Privalov, “Simulation of Relay-races”, Bulletin of the South Ural State University. Mathematical Modelling, Programming Computer Software, 9:4 (2016), 117–128 | Zbl

[16] E. V. Larkin, A. N. Ivutin, “Estimation of Latency in Embedded Real-Time Systems”, 3-rd Meditteranean Conference on Embedded Computing (MECO-2014) (Budva, Montenegro, 2014), 2014, 236–239

[17] E. V. Larkin, A. N. Ivutin, A. Troshina, “Model of interruptions in Swarm unit”, Advances in swarm intelligence, Proceedings of 8-th International conference ICSI 2017 (Fukuoka, Japan, 2017), v. 1, 2017, 50–59

[18] D. Bienstock, “Graph searching, path-width, tree-width and related problems (a survey)”, Reliability of Computer and Communication Networks (New Brunswick, NJ, 1989), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 5, Amer. Math. Soc., Providence, RI, 1991, 33–49 | MR