Mathematical models of heating and melting of particles of fine-dispersed powder
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 488-498.

Voir la notice de l'article provenant de la source Math-Net.Ru

As it develops, mathematical modeling finds more and more new areas of application, remaining an effective tool, including engineering. Mathematical models go the way of evolutionary development, increasing the adequacy in accordance with real physical processes. One of the relevant areas of mathematical modeling is associated with the developing technologies of additive prototyping. For example, in the manufacture of products from metal powders by the methods of additive technologies, in particular, selective laser melting, one of the practical issues is the selection of optimal parameters for the 3D printer. The solution to the optimization problem x of the 3D printer operation parameters should be based on a mathematical model of the process of heating and melting of metal particles. An approach based on the formation and solution of the heat equation with boundary conditions that take into account the spherical shape of the particle, the energy distribution in the cross section of the laser beam, and the relative spatial position of the particle and the laser beam is used as the basic concept of modeling. It is noted that to assess the structure of the formed parts, this approach is redundant, and the algorithm for integrating the partial differential equation has high computational complexity. To simplify the analysis task, the initial micromodel is transformed into heating and melting macromodels in which the temperature distribution over the volume of the particle is considered constant, and the external effect on the particle is reduced to heat transfer through the surface of the ball, from the upper side from the laser beam to the particle, and from the lower side — from particle to environment. For the macromodel, we obtained time diagrams of the temperature increase and the accumulated internal particle energy in time. It is concluded that it is possible to divide the space around the particle into zones: complete and incomplete melting, as well as a heating zone insufficient for melting. It is shown that the presence of such zones leads to the friability of the structure of the parts formed on the 3D printer.Keywords: additive technology, laser heating, heat conduction equation, micro-model, macro-model, heating-melting timing charts.
Keywords: additive technologies, laser heating, thermal conductivity equation, micromodel, macromodel, time diagrams of heating-melting.
@article{CHEB_2019_20_2_a36,
     author = {E. V. Larkin and A. N. Privalov},
     title = {Mathematical models of heating and melting of particles of fine-dispersed powder},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {488--498},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a36/}
}
TY  - JOUR
AU  - E. V. Larkin
AU  - A. N. Privalov
TI  - Mathematical models of heating and melting of particles of fine-dispersed powder
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 488
EP  - 498
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a36/
LA  - ru
ID  - CHEB_2019_20_2_a36
ER  - 
%0 Journal Article
%A E. V. Larkin
%A A. N. Privalov
%T Mathematical models of heating and melting of particles of fine-dispersed powder
%J Čebyševskij sbornik
%D 2019
%P 488-498
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a36/
%G ru
%F CHEB_2019_20_2_a36
E. V. Larkin; A. N. Privalov. Mathematical models of heating and melting of particles of fine-dispersed powder. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 488-498. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a36/

[1] M. A. Zelenko, M. V. Nagaytsev, V. M. Dovbysh, Additive technology in mechanical engineering, A manual for engineer, SSC RF FSUE “NAMI”, Russia, 2015

[2] I. A. Volegzhanin, V. N. Makarov, Y. V. Kholodnikov, “Additive technologies for the use of composites in the production of mining machines”, Mining Information and Analytical Bulletin, 2017, no. 6, 32–38

[3] E. O. Olakanmi, R. F. Cochrane, K. W. Dalgarno, “A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties”, Progress in Materials Science, 74, October (2015), 401–477

[4] A. Ya. Travyanov et. al., “Study of mechanical properties of cellular structures from 03Kh16N15M3 stainless steel depending on parameters of an elementary cell”, Chernye Metally, 2018, no. 10, 59–64

[5] P. V. Petrovsky et. al., “Dependence of structure and properties of 03Kh16N15M3 on the geometry of cellular structures obtained by the selective laser melting method”, Chernye Metally, 2019, no. 3, 49–53

[6] A. Ya. Travyanov, A. V. Dub, P. V. Petrovsky et. al., “Study of mechanical properties of cellular structures from 03Kh16N15MZ stainless steel depending on parameters of an elementary cell”, Chernye Metally, 2018, no. 10, 59–63

[7] P. V. Petrovsky, V. V. Cheverikin, P. Yu. Sokolov, “Dependence of the structure and properties of 03Kh16N15M3 steel on the geometry of cellular structures obtained by the method of selective laser melting”, Ferrous metals, 2019, no. 3, 49–53

[8] D. V. Masailo, A. A. Popovich, A. V. Orlov, “Study of the structure and mechanical characteristics of samples obtained by gas-powder laser surfacing and selective laser melting from a spheroidizing powder based on iron”, Ferrous metals, 2019, no. 4, 73–77

[9] I. V. Shishkovsky, Laser synthesis of functional gradient mesostructures and bulk products, Fizmatlit, Russia, 2009

[10] S. J. Orfanidis, Introduction to signal processing, Prentice Hall Inc., NY, USA, 1996, 790 pp.

[11] W. Benenson, J. W. Harns, H. Stocker, H. Lotz (eds.), Handbook of Physics, Springer Verlag, N.Y., USA, 2002

[12] A. G. Grigoryants, Fundamentals of laser processing of materials, Mechanical Engineering, Russia, 1989

[13] T. A. Akimenko, V. A. Dunaev, E. V. Larkin, “Computer Simulation of the Surface heating process by the movable laser”, V International Workshop on Mathematical Models and their Applications (2016, Krasnoyarsk, Russia), IOF Conf. Series. Matherial science and Engeneering, 173, 2017, UNSP 012002 | MR

[14] I. Smurov, “Pyrometry applications in laser machining”, Proc. of SPIE, 4147, 2001, 55–66

[15] Yakovlev E. B., “Overheating of solids during melting”, Izv. USSR Academy of Sciences. Ser. physical, 53:3 (1989), 591–594

[16] E. B. Yakovlev, V. P. Veiko, “Features of metal melting during laser heating”, NT Bulletin of Information Technologies, Mechanics and Optics, 21 (2005), 52–56

[17] E. B. Yakovlev, V. V. Svirina, O. N. Sergaeva, “Features of melting of metals under the action of ultrashort laser pulses”, Izv. universities. Instrument making, 53:4 (2010), 57–62

[18] R. Li, M. Wang, T. Yuan, Song Bo, C. Chen, K. Zhou, P. Cao, “Selective laser melting of a novel Sc and Zr modified Al-6.2 Mg alloy: Processing, microstructure, and properties”, Powder Technology, 319 (2017), 117–128

[19] V. I. Gorbachev, Development of a prototype of engineering software (IPO) based on high-performance computing to assess the mechanical characteristics of products manufactured using additive technologies (selective laser sintering), taking into account the manufacturing strategy of the product, Report on applied scientific research and experimental development, Tula state ped. un-t them. L.N. Tolstoy, Tula, 2017