Mots-clés : algebraic net
@article{CHEB_2019_20_2_a31,
author = {E. M. Rarova},
title = {Trigonometric sums of nets of algebraic lattices},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {399--405},
year = {2019},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a31/}
}
E. M. Rarova. Trigonometric sums of nets of algebraic lattices. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 399-405. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a31/
[1] E. M. Rarova, “Decomposition of the trigonometric sum of a grid with weights in a series by lattice points”, Proceedings of Tula state University. Natural science, 2014, no. 1-1, 37–49
[2] E. M. Rarova, “Trigonometric grid sums with weights for integer lattice”, Proceedings of Tula state University. Natural science, 2014, no. 3, 34–39
[3] E. M. Rarova, “Trigonometric sums of algebraic nets”, Algebra, number theory and discrete geometry: modern problems and applications, Proceedings of the XIII International conference dedicated to the eighty-fifth anniversary of the birth of Professor Sergei Sergeevich Ryshkov, Tula state pedagogical University L. N. Tolstoy, 2015, 356–359
[4] E. M. Rarova, “Weighted number of points of algebraic net”, Chebyshevskii sbornik, 19:1 (2018), 200–219 | MR | Zbl
[5] I. Yu. Rebrova, N. M. Dobrovolsky, N. N. Dobrovolsky, I. N. Balaba, A. R. Yesayan, Yu. A. Basalov, Numerical Theoretic method in approximate analysis and its implementation in POIVS “TMK”, Monogr. In Under 2 hours. ed., v. I, Publishing house of Tula. state PED. UN-TA im. L. N. Tolstoy, Tula, 2016, 232 pp. | MR