Trigonometric sums of nets of algebraic lattices
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 399-405.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper continues the author's research on the evaluation of trigonometric sums of an algebraic net with weights with the simplest weight function of the second order. For the parameter $\vec{m}$ of the trigonometric sum $S_{M(t),\vec\rho_1} (\vec m)$, three cases are highlighted. If $\vec{m}$ belongs to the algebraic lattice $\Lambda (t \cdot T(\vec a))$, then the asymptotic formula is valid $$ S_{M(t),\vec\rho_1}(t(m,\ldots, m))=1+O\left(\frac{\ln^{s-1}\det \Lambda(t)} { (\det\Lambda(t))^2}\right). $$ If $\vec{m}$ does not belong to the algebraic lattice $\Lambda(t\cdot T(\vec a))$, then two vectors are defined $\vec{n}_\Lambda(\vec{m})=(n_1,\ldots,n_s)$ and $\vec{k}_\Lambda(\vec{m})$ from the conditions $\vec{k}_\Lambda(\vec{m})\in\Lambda$, $\vec{m}=\vec{n}_\Lambda(\vec{M})+\vec{K}_\lambda(\vec{m})$ and the product $q(\vec{n}_\lambda(\vec{m}))=\overline{n_1}\cdot\ldots\cdot\overline{n_s}$ is minimal. Asymptotic estimation is proved $$ S_{M(t),\vec\rho_1}(t(m,\ldots,m))=\frac{1-\delta(\vec{k}_\Lambda(\vec{m}))}{q(\vec{n}_\Lambda(\vec{m}))^2}+O\left(\frac{q(\vec{n}_\Lambda(\vec{m}))^2\ln^{s-1}\det \Lambda (t)}{ (\det\Lambda(t))^2}\right). $$
Keywords: algebraic lattices, algebraic net, trigonometric sums of algebraic net with weights, weight functions.
@article{CHEB_2019_20_2_a31,
     author = {E. M. Rarova},
     title = {Trigonometric sums of nets of algebraic lattices},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {399--405},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a31/}
}
TY  - JOUR
AU  - E. M. Rarova
TI  - Trigonometric sums of nets of algebraic lattices
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 399
EP  - 405
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a31/
LA  - ru
ID  - CHEB_2019_20_2_a31
ER  - 
%0 Journal Article
%A E. M. Rarova
%T Trigonometric sums of nets of algebraic lattices
%J Čebyševskij sbornik
%D 2019
%P 399-405
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a31/
%G ru
%F CHEB_2019_20_2_a31
E. M. Rarova. Trigonometric sums of nets of algebraic lattices. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 399-405. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a31/

[1] E. M. Rarova, “Decomposition of the trigonometric sum of a grid with weights in a series by lattice points”, Proceedings of Tula state University. Natural science, 2014, no. 1-1, 37–49

[2] E. M. Rarova, “Trigonometric grid sums with weights for integer lattice”, Proceedings of Tula state University. Natural science, 2014, no. 3, 34–39

[3] E. M. Rarova, “Trigonometric sums of algebraic nets”, Algebra, number theory and discrete geometry: modern problems and applications, Proceedings of the XIII International conference dedicated to the eighty-fifth anniversary of the birth of Professor Sergei Sergeevich Ryshkov, Tula state pedagogical University L. N. Tolstoy, 2015, 356–359

[4] E. M. Rarova, “Weighted number of points of algebraic net”, Chebyshevskii sbornik, 19:1 (2018), 200–219 | MR | Zbl

[5] I. Yu. Rebrova, N. M. Dobrovolsky, N. N. Dobrovolsky, I. N. Balaba, A. R. Yesayan, Yu. A. Basalov, Numerical Theoretic method in approximate analysis and its implementation in POIVS “TMK”, Monogr. In Under 2 hours. ed., v. I, Publishing house of Tula. state PED. UN-TA im. L. N. Tolstoy, Tula, 2016, 232 pp. | MR