Trigonometric sums of nets of algebraic lattices
Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 399-405 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper continues the author's research on the evaluation of trigonometric sums of an algebraic net with weights with the simplest weight function of the second order. For the parameter $\vec{m}$ of the trigonometric sum $S_{M(t),\vec\rho_1} (\vec m)$, three cases are highlighted. If $\vec{m}$ belongs to the algebraic lattice $\Lambda (t \cdot T(\vec a))$, then the asymptotic formula is valid $$ S_{M(t),\vec\rho_1}(t(m,\ldots, m))=1+O\left(\frac{\ln^{s-1}\det \Lambda(t)} { (\det\Lambda(t))^2}\right). $$ If $\vec{m}$ does not belong to the algebraic lattice $\Lambda(t\cdot T(\vec a))$, then two vectors are defined $\vec{n}_\Lambda(\vec{m})=(n_1,\ldots,n_s)$ and $\vec{k}_\Lambda(\vec{m})$ from the conditions $\vec{k}_\Lambda(\vec{m})\in\Lambda$, $\vec{m}=\vec{n}_\Lambda(\vec{M})+\vec{K}_\lambda(\vec{m})$ and the product $q(\vec{n}_\lambda(\vec{m}))=\overline{n_1}\cdot\ldots\cdot\overline{n_s}$ is minimal. Asymptotic estimation is proved $$ S_{M(t),\vec\rho_1}(t(m,\ldots,m))=\frac{1-\delta(\vec{k}_\Lambda(\vec{m}))}{q(\vec{n}_\Lambda(\vec{m}))^2}+O\left(\frac{q(\vec{n}_\Lambda(\vec{m}))^2\ln^{s-1}\det \Lambda (t)}{ (\det\Lambda(t))^2}\right). $$
Keywords: algebraic lattices, trigonometric sums of algebraic net with weights, weight functions.
Mots-clés : algebraic net
@article{CHEB_2019_20_2_a31,
     author = {E. M. Rarova},
     title = {Trigonometric sums of nets of algebraic lattices},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {399--405},
     year = {2019},
     volume = {20},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a31/}
}
TY  - JOUR
AU  - E. M. Rarova
TI  - Trigonometric sums of nets of algebraic lattices
JO  - Čebyševskij sbornik
PY  - 2019
SP  - 399
EP  - 405
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a31/
LA  - ru
ID  - CHEB_2019_20_2_a31
ER  - 
%0 Journal Article
%A E. M. Rarova
%T Trigonometric sums of nets of algebraic lattices
%J Čebyševskij sbornik
%D 2019
%P 399-405
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a31/
%G ru
%F CHEB_2019_20_2_a31
E. M. Rarova. Trigonometric sums of nets of algebraic lattices. Čebyševskij sbornik, Tome 20 (2019) no. 2, pp. 399-405. http://geodesic.mathdoc.fr/item/CHEB_2019_20_2_a31/

[1] E. M. Rarova, “Decomposition of the trigonometric sum of a grid with weights in a series by lattice points”, Proceedings of Tula state University. Natural science, 2014, no. 1-1, 37–49

[2] E. M. Rarova, “Trigonometric grid sums with weights for integer lattice”, Proceedings of Tula state University. Natural science, 2014, no. 3, 34–39

[3] E. M. Rarova, “Trigonometric sums of algebraic nets”, Algebra, number theory and discrete geometry: modern problems and applications, Proceedings of the XIII International conference dedicated to the eighty-fifth anniversary of the birth of Professor Sergei Sergeevich Ryshkov, Tula state pedagogical University L. N. Tolstoy, 2015, 356–359

[4] E. M. Rarova, “Weighted number of points of algebraic net”, Chebyshevskii sbornik, 19:1 (2018), 200–219 | MR | Zbl

[5] I. Yu. Rebrova, N. M. Dobrovolsky, N. N. Dobrovolsky, I. N. Balaba, A. R. Yesayan, Yu. A. Basalov, Numerical Theoretic method in approximate analysis and its implementation in POIVS “TMK”, Monogr. In Under 2 hours. ed., v. I, Publishing house of Tula. state PED. UN-TA im. L. N. Tolstoy, Tula, 2016, 232 pp. | MR